The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nucleocapsid


High impact information on Nucleocapsid


Chemical compound and disease context of Nucleocapsid

  • A highly significant enhancement of the CD4-mediated response to HBV nucleocapsid antigens was already detectable in most patients 7-14 d after the start of lamivudine treatment [11].
  • The function of these is probably to anchor the tail against the inner surface of the membrane so that the tyrosine-containing motif is properly presented to the nucleocapsid [12].
  • Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not "zinc-binding fingers" [13].
  • One or two copies of similar sequence motifs are found in the nucleocapsid protein of retroviruses where they are involved in protein-RNA interactions, and in cellular nucleic acid binding protein (CNBP), a protein that binds to the sterol regulatory element [14].
  • By contrast, treatment of inside out vesicles with Triton X-100 solubilizes the lipid bilayer, releasing viral integral membrane glycoproteins and leaving viral nucleocapsids intact [15].

Biological context of Nucleocapsid


Anatomical context of Nucleocapsid


Gene context of Nucleocapsid

  • In conclusion, APOBEC3G and APOBEC3F but not rat APOBEC1 can downregulate the production of replication-competent hepadnaviral nucleocapsids [25].
  • High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site [26].
  • Transcription of Ebola virus (EBOV)-specific mRNA is driven by the nucleocapsid proteins NP, VP35, and L [27].
  • Furthermore, we found that Hsp60 did not encapsidate into nucleocapsids [28].
  • The product nucleocapsids formed with three mutants, NP114, NP121, and NP126, however, did not serve as templates for further amplification in vivo, while NP107, NP108, and NP111 were nearly like wild-type NP in vivo [29].

Analytical, diagnostic and therapeutic context of Nucleocapsid


  1. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Sureau, C., Romet-Lemonne, J.L., Mullins, J.I., Essex, M. Cell (1986) [Pubmed]
  2. Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Rice, W.G., Turpin, J.A., Huang, M., Clanton, D., Buckheit, R.W., Covell, D.G., Wallqvist, A., McDonnell, N.B., DeGuzman, R.N., Summers, M.F., Zalkow, L., Bader, J.P., Haugwitz, R.D., Sausville, E.A. Nat. Med. (1997) [Pubmed]
  3. Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Rice, W.G., Schaeffer, C.A., Harten, B., Villinger, F., South, T.L., Summers, M.F., Henderson, L.E., Bess, J.W., Arthur, L.O., McDougal, J.S. Nature (1993) [Pubmed]
  4. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Choi, H.K., Tong, L., Minor, W., Dumas, P., Boege, U., Rossmann, M.G., Wengler, G. Nature (1991) [Pubmed]
  5. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. Rehermann, B., Lau, D., Hoofnagle, J.H., Chisari, F.V. J. Clin. Invest. (1996) [Pubmed]
  6. Nucleocapsid and glycoprotein organization in an enveloped virus. Cheng, R.H., Kuhn, R.J., Olson, N.H., Rossmann, M.G., Choi, H.K., Smith, T.J., Baker, T.S. Cell (1995) [Pubmed]
  7. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. De Guzman, R.N., Wu, Z.R., Stalling, C.C., Pappalardo, L., Borer, P.N., Summers, M.F. Science (1998) [Pubmed]
  8. An essential splicing factor, SLU7, mediates 3' splice site choice in yeast. Frank, D., Guthrie, C. Genes Dev. (1992) [Pubmed]
  9. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA. Alonso-Caplen, F.V., Nemeroff, M.E., Qiu, Y., Krug, R.M. Genes Dev. (1992) [Pubmed]
  10. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Huang, Y., Xu, L., Sun, Y., Nabel, G.J. Mol. Cell (2002) [Pubmed]
  11. Lamivudine treatment can restore T cell responsiveness in chronic hepatitis B. Boni, C., Bertoletti, A., Penna, A., Cavalli, A., Pilli, M., Urbani, S., Scognamiglio, P., Boehme, R., Panebianco, R., Fiaccadori, F., Ferrari, C. J. Clin. Invest. (1998) [Pubmed]
  12. A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. Zhao, H., Lindqvist, B., Garoff, H., von Bonsdorff, C.H., Liljeström, P. EMBO J. (1994) [Pubmed]
  13. Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not "zinc-binding fingers". Jentoft, J.E., Smith, L.M., Fu, X.D., Johnson, M., Leis, J. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  14. Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain. Sato, S.M., Sargent, T.D. Development (1991) [Pubmed]
  15. Interaction of Sendai virus proteins with the cytoplasmic surface of erythrocyte membranes following viral envelope fusion. Caldwell, S.E., Lyles, D.S. J. Biol. Chem. (1981) [Pubmed]
  16. Purification and characterization of a naturally processed hepatitis B virus peptide recognized by CD8+ cytotoxic T lymphocytes. Tsai, S.L., Chen, M.H., Yeh, C.T., Chu, C.M., Lin, A.N., Chiou, F.H., Chang, T.H., Liaw, Y.F. J. Clin. Invest. (1996) [Pubmed]
  17. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. Bartenschlager, R., Schaller, H. EMBO J. (1992) [Pubmed]
  18. Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Bridgen, A., Weber, F., Fazakerley, J.K., Elliott, R.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  19. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Kochs, G., Haller, O. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  20. VP24 of Marburg virus influences formation of infectious particles. Bamberg, S., Kolesnikova, L., Möller, P., Klenk, H.D., Becker, S. J. Virol. (2005) [Pubmed]
  21. Herpesvirus sylvilagus I. Polypeptides of virions and nucleocapsids. Cohrs, R., Rouhandeh, H. J. Virol. (1982) [Pubmed]
  22. Uukuniemi virus glycoproteins accumulate in and cause morphological changes of the Golgi complex in the absence of virus maturation. Gahmberg, N., Kuismanen, E., Keränen, S., Pettersson, R.F. J. Virol. (1986) [Pubmed]
  23. Hepatitis B virus (HBV)-specific cytotoxic T-cell response in humans: production of target cells by stable expression of HBV-encoded proteins in immortalized human B-cell lines. Guilhot, S., Fowler, P., Portillo, G., Margolskee, R.F., Ferrari, C., Bertoletti, A., Chisari, F.V. J. Virol. (1992) [Pubmed]
  24. Production of monoclonal antibodies against nucleocapsid proteins of herpes simplex virus types 1 and 2. Zweig, M., Heilman, C.J., Rabin, H., Hopkins, R.F., Neubauer, R.H., Hampar, B. J. Virol. (1979) [Pubmed]
  25. APOBEC-mediated interference with hepadnavirus production. Rösler, C., Köck, J., Kann, M., Malim, M.H., Blum, H.E., Baumert, T.F., von Weizsäcker, F. Hepatology (2005) [Pubmed]
  26. High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site. Akari, H., Fujita, M., Kao, S., Khan, M.A., Shehu-Xhilaga, M., Adachi, A., Strebel, K. J. Biol. Chem. (2004) [Pubmed]
  27. Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. Hartlieb, B., Modrof, J., Mühlberger, E., Klenk, H.D., Becker, S. J. Biol. Chem. (2003) [Pubmed]
  28. Antisense oligodeoxynucleotides targeted against molecular chaperonin Hsp60 block human hepatitis B virus replication. Park, S.G., Lee, S.M., Jung, G. J. Biol. Chem. (2003) [Pubmed]
  29. An amino-terminal domain of the Sendai virus nucleocapsid protein is required for template function in viral RNA synthesis. Myers, T.M., Moyer, S.A. J. Virol. (1997) [Pubmed]
  30. Site-directed mutagenesis of the avian retrovirus nucleocapsid protein, pp 12. Mutation which affects RNA binding in vitro blocks viral replication. Fu, X.D., Katz, R.A., Skalka, A.M., Leis, J. J. Biol. Chem. (1988) [Pubmed]
  31. Identification of Saint Louis encephalitis virus mRNA. Naeve, C.W., Trent, D.W. J. Virol. (1978) [Pubmed]
  32. The gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH. Oker-Blom, C. J. Virol. (1984) [Pubmed]
  33. Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. Nozawa, N., Kawaguchi, Y., Tanaka, M., Kato, A., Kato, A., Kimura, H., Nishiyama, Y. J. Virol. (2005) [Pubmed]
  34. Stereo images of vesicular stomatitis virus assembly. Odenwald, W.F., Arnheiter, H., Dubois-Dalcq, M., Lazzarini, R.A. J. Virol. (1986) [Pubmed]
WikiGenes - Universities