The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Activity of hepatocyte nuclear factor 1alpha and hepatocyte nuclear factor 1beta isoforms is differently affected by the inhibition of protein phosphatases 1/2A.

Phosphorylation/dephosphorylation processes are known to control the activity of several transcription factors. The nutrition-dependent expression of sucrase-isomaltase and Na+/glucose co-transporter 1, two proteins implicated in the intestinal absorption of glucose, has been shown to be closely related to modifications of hepatocyte nuclear factor 1 (HNF1) activity. This study was conducted to determine whether phosphorylation/dephosphorylation processes could control HNF1 activity. We show that expression of the gene encoding sucrase-isomaltase is inhibited in the enterocytic Caco-2 clone TC7 by okadaic acid at a concentration that is known to inhibit protein phosphatases 1/2A and that does not affect cell viability. At the same concentration, phosphorylation of the HNF1alpha and HNF1beta isoforms is greatly enhanced and their DNA-binding capacity is decreased. The phosphorylation state of HNF1beta isoforms directly affects their DNA-binding capacity. In contrast, the decreased DNA-binding activity of the HNF1alpha isoforms, which was observed after the inhibition of protein phosphatases 1/2A, is due to a net decrease in their total cellular and nuclear amounts. Such an effect results from a decrease in both the HNF1alpha mRNA levels and the half-life of the protein. This is the first evidence for the implication of protein phosphatases 1/2A in the control of the activity of HNF1 isoforms. Moreover, these results emphasize a physiological role for the balance between phosphatases and kinases in the nutrition-dependent regulation of HNF1-controlled genes.[1]

References

 
WikiGenes - Universities