The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels.

The voltage-sensing domains in voltage-gated K(+) channels each contain four transmembrane (TM) segments, termed S1 to S4. Previous scanning mutagenesis studies suggest that S1 and S2 are amphipathic membrane spanning alpha-helices that interface directly with the lipid membrane. In contrast, the secondary structure of and/or the environments surrounding S3 and S4 are more complex. For S3, although the NH(2)-terminal part displays significant helical character in both tryptophan- and alanine-scanning mutagenesis studies, the structure of the COOH-terminal portion of this TM is less clear. The COOH terminus of S3 is particularly interesting because this is where gating modifier toxins like Hanatoxin interact with different voltage-gated ion channels. To further examine the secondary structure of the COOH terminus of S3, we lysine-scanned this region in the drk1 K(+) channel and examined the mutation-induced changes in channel gating and Hanatoxin binding affinity, looking for periodicity characteristic of an alpha-helix. Both the mutation-induced perturbation in the toxin-channel interaction and in gating support the presence of an alpha-helix of at least 10 residues in length in the COOH terminus of S3. Together with previous scanning mutagenesis studies, these results suggest that, in voltage-gated K(+) channels, the entire S3 segment is helical, but that it can be divided into two parts. The NH(2)-terminal part of S3 interfaces with both lipid and protein, whereas the COOH-terminal part interfaces with water (where Hanatoxin binds) and possibly protein. A conserved proline residue is located near the boundary between the two parts of S3, arguing for the presence of a kink in this region. Several lines of evidence suggest that these structural features of S3 probably exist in all voltage-gated ion channels.[1]

References

 
WikiGenes - Universities