The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation.

In Saccharomyces cerevisiae, the rapamycin-sensitive TOR signaling pathway plays an essential role in up-regulating translation initiation and cell cycle progression in response to nutrient availability. One of the mechanisms by which TOR regulates cell proliferation is by excluding the GLN3 transcriptional activator from the nucleus and, in consequence, preventing its transcriptional activation therein. We examined the possibility that the TOR cascade could also control the transcriptional activity of Gcn4p, which is known to respond to amino acid availability. The results presented in this paper indicate that GCN4 plays a role in the rapamycin-sensitive signaling pathway, regulating the expression of genes involved in the utilization of poor nitrogen sources, a previously unrecognized role for Gcn4p, and that the TOR pathway controls GCN4 activity by regulating the translation of GCN4 mRNA. This constitutes an additional TOR-dependent mechanism which modulates the action of transcriptional activators.[1]


  1. TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. Valenzuela, L., Aranda, C., González, A. J. Bacteriol. (2001) [Pubmed]
WikiGenes - Universities