Chemo-enzymatic D-enantiomerization of DL-lactate.
We investigated the total conversion of racemic lactate, L-lactate, and pyruvate into D-lactate, which is very useful as a starting material for the synthesis of chiral compounds and much more valuable than the L-enantiomer by means of coupling of L-specific oxidation of the racemate with L-lactate oxidase and non-enantiospecific reduction of pyruvate to DL-lactate with sodium borohydride. In this one-pot system, L-lactate was enantiospecifically oxidized to an achiral product, pyruvate, which was chemically reduced to DL-lactate leading to a turnover. Consequently, either DL-lactate, L-lactate, or pyruvate was fully converted to the D-enantiomer. We optimized the reaction conditions: DL-lactate was converted to D-lactate in 99% of the theoretical yield and with more than 99% enantiomeric excess. DL-alpha-Hydroxybutyrate and alpha-ketobutyrate were converted also to D-alpha-hydroxybutyrate in the same way, though slowly.[1]References
- Chemo-enzymatic D-enantiomerization of DL-lactate. Oikawa, T., Mukoyama, S., Soda, K. Biotechnol. Bioeng. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg