The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Hidkitex DF     sodium boron(-1) anion

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hidkitex DF


Psychiatry related information on Hidkitex DF


High impact information on Hidkitex DF


Chemical compound and disease context of Hidkitex DF


Biological context of Hidkitex DF


Anatomical context of Hidkitex DF

  • Oxidation of viable rat lymph node lymphocytes with either periodate or a combination of neuraminidase and galactose oxidase (NGO), followed by reduction with tritiated sodium borohydride, labels similar sets of cell-surface molecules as assessed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis [22].
  • SGP140 glycoprotein, a major cell surface sialoglycoprotein with an apparent m.w. of 140,000, was detected on the human T lymphoblastoid cell line P12/Ichikawa by labeling with periodate-tritiated sodium borohydride, followed by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography [23].
  • Reduction of constitutive aldehydes on cloned T cells by sodium borohydride resulted in inhibition of Ag-specific responses [24].
  • Sodium borohydride reduction of this oviduct saccharide moiety indicated that 1 of the 2 glucosamines was situated in a reducing terminal position [25].
  • Peripheral blood leukocytes of five chicken strains were radioactively labeled by incorporation of tritiated amino acids, enzymatic iodination, or mild periodate oxidation followed by reduction with tritiated sodium borohydride [26].

Associations of Hidkitex DF with other chemical compounds

  • Acetaldehyde reacted with hemoglobin at neutral pH and 37 degrees C to form adducts that were stable to dialysis and that were not reduced by sodium borohydride [27].
  • Reduction of the Schiff base with sodium borohydride, succinylation of the remaining lysine residues, and digestion with trypsin result in formation of a single pyridoxyl peptide, which was purified to homogeneity after chromatography on DEAE-cellulose, treatment with alkaline phosphatase, and rechromatography [28].
  • A double chain peptide containing the sodium borohydride-reduced intermolecular cross-link, hydroxylysinohydroxynorleucine, was isolated following sequential cyanogen bromide digestion and limited alkaline hydrolysis of insoluble calf bone collagen [29].
  • The radioactive glycopeptide was excluded from a Sephadex G-50 column, but the 35S radioactivity and oligosaccharides were found in the retarded fractions after treatment with alkali in the absence of sodium borohydride [30].
  • Extensive alkaline digestion of these peptides in the presence of sodium borohydride released the sulfate-containing moieties which were separated from free amino acids by gel filtration [31].

Gene context of Hidkitex DF


Analytical, diagnostic and therapeutic context of Hidkitex DF


  1. Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. Conservation of Lys-X-Gly-Gly sequence in the bacterial and mammalian enzymes. Furukawa, K., Tagaya, M., Inouye, M., Preiss, J., Fukui, T. J. Biol. Chem. (1990) [Pubmed]
  2. Radioisotopic labeling of human papovavirus (BK) by iodination and reductive alkylation. Wright, P.J., di Mayorca, G. J. Virol. (1976) [Pubmed]
  3. Cyclopenta[f]isoquinoline derivatives designed to bind specifically to native deoxyribonucleic acid. 2. Synthesis of 6-carbamylmethyl-8-methyl-7(5)H-cyclopenta[f]isoquinolin-3(2H)-one and its interaction with deoxyribonucleic acids and poly(deoxyribonucleotides). Kundu, N.G., Hallett, W., Heidelberger, C. J. Med. Chem. (1975) [Pubmed]
  4. In vitro radiolabeling procedure which labels the proteins of Newcastle disease virions with carbon-14. McMillen, J., Consigli, R.A. Infect. Immun. (1975) [Pubmed]
  5. Different surface glycoprotein patterns on human T-, B- and leukemic-lymphocytes. Andersson, L.C., Wasastjerna, C., Gahmberg, C.G. Int. J. Cancer (1976) [Pubmed]
  6. Carbohydrate-containing derivatives of the trypsin-kallikrein inhibitor aprotinin from bovine organs. I. Modification with lactose, characterization and behaviour of the preparation in vivo. Larionova, N.I., Mityushina, G.V., Kazanskaya, N.F., Blidchenko, Y.A., Berezin, I.V. Hoppe-Seyler's Z. Physiol. Chem. (1984) [Pubmed]
  7. Metabolic fate of cell surface glycoproteins during immunoglobulin-induced internalization. Baumann, H., Doyle, D. Cell (1980) [Pubmed]
  8. Uric acid is a major antioxidant in human nasal airway secretions. Peden, D.B., Hohman, R., Brown, M.E., Mason, R.T., Berkebile, C., Fales, H.M., Kaliner, M.A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  9. Prostaglandin synthesis in isolated rat kidney glomeruli. Hassid, A., Konieczkowski, M., Dunn, M.J. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  10. Expression of the leukocyte functional molecule (LFA-1) on mouse platelets. McCaffery, P.J., Berridge, M.V. Blood (1986) [Pubmed]
  11. Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. Gilboa, R., Zharkov, D.O., Golan, G., Fernandes, A.S., Gerchman, S.E., Matz, E., Kycia, J.H., Grollman, A.P., Shoham, G. J. Biol. Chem. (2002) [Pubmed]
  12. Modification of ribonucleic acid by vitamin B6. 1. Specific interaction of pyridoxal 5'-phosphate with transfer ribonucleic acid. Kopelovich, L., Wolfe, G. Biochemistry (1977) [Pubmed]
  13. Immunoblot detection of pyridoxal phosphate binding proteins in liver and hepatoma cytosolic extracts. Kittler, J.M., Viceps-Madore, D., Cidlowski, J.A., Thanassi, J.W. Biochem. Biophys. Res. Commun. (1983) [Pubmed]
  14. Immunocytochemical methods for demonstrating canine distemper virus antigen in aldehyde-fixed paraffin-embedded tissue. Axthelm, M.K., Krakowka, S. J. Virol. Methods (1986) [Pubmed]
  15. Identification of lysyl residues at the AMP-binding site of biodegradative threonine deaminase from Escherichia coli. Hirose, K., Kawata, Y., Yumoto, N., Tokushige, M. J. Biochem. (1991) [Pubmed]
  16. Identification of a 120-kD surface glycoprotein distinguishing cultured superior cervical ganglion from ciliary ganglion neurons. von der Weid, P.Y., Zurn, A.D. Dev. Neurosci. (1990) [Pubmed]
  17. The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Methylation analysis and structure of the backbones. Cardemil, L., Wolk, C.P. J. Biol. Chem. (1976) [Pubmed]
  18. Site-directed mutagenesis identifies aspartate 33 as a previously unidentified critical residue in the catalytic mechanism of rabbit aldolase A. Morris, A.J., Tolan, D.R. J. Biol. Chem. (1993) [Pubmed]
  19. An oxidative damage-specific endonuclease from rat liver mitochondria. Croteau, D.L., ap Rhys, C.M., Hudson, E.K., Dianov, G.L., Hansford, R.G., Bohr, V.A. J. Biol. Chem. (1997) [Pubmed]
  20. Inhibition of oxidized low-density lipoprotein-induced apoptosis in endothelial cells by nitric oxide. Peroxyl radical scavenging as an antiapoptotic mechanism. Kotamraju, S., Hogg, N., Joseph, J., Keefer, L.K., Kalyanaraman, B. J. Biol. Chem. (2001) [Pubmed]
  21. Sequence-specific DNA damage induced by reduced mitomycin C and 7-N-(p-hydroxyphenyl)mitomycin C. Ueda, K., Komano, T. Nucleic Acids Res. (1984) [Pubmed]
  22. Cell surface glycoproteins of rat lymphocytes. I. Correlation of mitogenic stimulation by periodate or neuraminidase and galactose oxidase with the presence of papain-sensitive glycoproteins. Mitchell, R.N., Bowers, W.E. J. Immunol. (1978) [Pubmed]
  23. Purification of a major sialoglycoprotein (SGP140) on P12/Ichikawa cells and its expression on differentiated HL-60 cells. Yamamoto, Y., Mitsui, H., Nishikawa, Y. J. Immunol. (1984) [Pubmed]
  24. An essential role for constitutive Schiff base-forming ligands in antigen presentation to murine T cell clones. Gao, X.M., Rhodes, J. J. Immunol. (1990) [Pubmed]
  25. Lipid-saccharide intermediates in glycoprotein biosynthesis. III. Comparison of oligosaccharide-lipids formed by slices from several tissues. Spiro, M.J., Spiro, R.G., Bhoyroo, V.D. J. Biol. Chem. (1976) [Pubmed]
  26. Chemical properties of two antigens controlled by the major histocompatibility complex of the chicken. Ziegler, A., Pink, R. J. Biol. Chem. (1976) [Pubmed]
  27. Reaction of acetaldehyde with hemoglobin. San George, R.C., Hoberman, H.D. J. Biol. Chem. (1986) [Pubmed]
  28. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase. Kempe, T.D., Stark, G.R. J. Biol. Chem. (1975) [Pubmed]
  29. Isolation and characterization of a double chain intermolecular cross-linked peptide from insoluble calf bone collagen. Stimler, N.P., Tanzer, M.L. J. Biol. Chem. (1979) [Pubmed]
  30. Enzymatic sulfation of exogenous high molecular weight glycopeptides by microsomal fraction of the rabbit uterine endometrium. Munakata, H., Isemura, M., Yosizawa, Z. J. Biol. Chem. (1985) [Pubmed]
  31. Post-translational incorporation of [35S]sulfate into oligosaccharide side chains of pro-opiomelanocortin in rat intermediate lobe cells. Bourbonnais, Y., Crine, P. J. Biol. Chem. (1985) [Pubmed]
  32. A human opsin-related gene that encodes a retinaldehyde-binding protein. Shen, D., Jiang, M., Hao, W., Tao, L., Salazar, M., Fong, H.K. Biochemistry (1994) [Pubmed]
  33. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase. Ferreira, G.C., Neame, P.J., Dailey, H.A. Protein Sci. (1993) [Pubmed]
  34. An investigation into the mechanisms mediating plasma lipoprotein-potentiated beta-amyloid fibrillogenesis. Stanyer, L., Betteridge, D.J., Smith, C.C. FEBS Lett. (2002) [Pubmed]
  35. Characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity. Ten Hagen, K.G., Tetaert, D., Hagen, F.K., Richet, C., Beres, T.M., Gagnon, J., Balys, M.M., VanWuyckhuyse, B., Bedi, G.S., Degand, P., Tabak, L.A. J. Biol. Chem. (1999) [Pubmed]
  36. Reduction of aflatoxins B1 and B2 with sodium borohydride. Ashoor, S.H., Chu, F.S. Journal - Association of Official Analytical Chemists. (1975) [Pubmed]
  37. Nature and distribution of the morphogen DIF in the Dictyostelium slug. Brookman, J.J., Jermyn, K.A., Kay, R.R. Development (1987) [Pubmed]
  38. Effects of sodium periodate modification of lymphocytes on the sensitization and lytic phases of T cell-mediated lympholysis. Schmitt-Verhulst, A., Shearer, G.M. J. Immunol. (1976) [Pubmed]
  39. Monoclonal antibodies against glutaraldehyde-conjugated dopamine. Chagnaud, J.L., Mons, N., Tuffet, S., Grandier-Vazeilles, X., Geffard, M. J. Neurochem. (1987) [Pubmed]
  40. Direct determination of mercury in blood by use of sodium borohydride reduction and atomic absorption spectrophotometry. Sharma, D.C., Davis, P.S. Clin. Chem. (1979) [Pubmed]
  41. Spectroscopic studies of bacteriorhodopsin fragments dissolved in organic solution. Torres, J., Padrós, E. Biophys. J. (1995) [Pubmed]
WikiGenes - Universities