The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Yeast 2 microm plasmid copy number is elevated by a mutation in the nuclear gene UBC4.

The copy number of the Saccharomyces cerevisiae endogenous 2 microm plasmid is under strict control to ensure efficient propagation to the daughter cell without significantly reducing the growth rate of the mother or the daughter cell. A recessive mutation has been identified that resulted in an elevated but stable 2 microm plasmid copy number, which could be complemented by a genomic DNA clone containing the UBC4 gene, encoding an E2 ubiquitin-conjugating enzyme. A ubc4::URA3 deletion resulted in the same elevated 2 microm plasmid copy number. An analysis of the endogenous 2 microm transcripts revealed that the steady-state abundance of REP1, REP2, FLP and RAF were all increased 4-5-fold in the mutant. Analysis of the mutant ubc4 allele identified a single base pair mutation within the UBC4 coding region, which would generate a glutamic acid to lysine amino acid substitution within a region of conserved tertiary structure located within the first alpha-helix of Ubc4p. These investigations represent the first molecular characterization of a mutation within a Saccharomyces cerevisiae nuclear gene shown to affect 2 microm steady-state plasmid copy number and implicate the ubiquitin-dependent proteolytic pathway in host control of 2 microm plasmid copy number.[1]

References

  1. Yeast 2 microm plasmid copy number is elevated by a mutation in the nuclear gene UBC4. Sleep, D., Finnis, C., Turner, A., Evans, L. Yeast (2001) [Pubmed]
 
WikiGenes - Universities