The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular targets of lithium action.

Lithium is highly effective in the treatment of bipolar disorder and also has multiple effects on embryonic development, glycogen synthesis, hematopoiesis, and other processes. However, the mechanism of lithium action is still unclear. A number of enzymes have been proposed as potential targets of lithium action, including inositol monophosphatase, a family of structurally related phosphomonoesterases, and the protein kinase glycogen synthase kinase-3. These potential targets are widely expressed, require metal ions for catalysis, and are generally inhibited by lithium in an uncompetitive manner, most likely by displacing a divalent cation. Thus, the challenge is to determine which target, if any, is responsible for a given response to lithium in cells. Comparison of lithium effects with genetic disruption of putative target molecules has helped to validate these targets, and the use of alternative inhibitors of a given target can also lend strong support for or against a proposed mechanism of lithium action. In this review, lithium sensitive enzymes are discussed, and a number of criteria are proposed to evaluate which of these enzymes are involved in the response to lithium in a given setting.[1]

References

  1. Molecular targets of lithium action. Phiel, C.J., Klein, P.S. Annu. Rev. Pharmacol. Toxicol. (2001) [Pubmed]
 
WikiGenes - Universities