The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing.

In addition to its documented role in the proteolytic processing of Notch-1 and the beta-amyloid precursor protein, presenilin 1 (PS1) associates with beta-catenin. In this study, we show that this interaction plays a critical role in regulating beta-catenin/T Cell Factor/Lymphoid Enhancer Factor-1 (LEF) signaling. PS1 deficiency results in accumulation of cytosolic beta-catenin, leading to a beta-catenin/LEF-dependent increase in cyclin D1 transcription and accelerated entry into the S phase of the cell cycle. Conversely, PS1 specifically represses LEF-dependent transcription in a dose-dependent manner. The hyperproliferative response can be reversed by reintroducing PS1 expression or overexpressing axin, but not a PS1 mutant that does not bind beta-catenin (PS1Deltacat) or by two different familial Alzheimer's disease mutants. In contrast, PS1Deltacat restores Notch-1 proteolytic cleavage and Abeta generation in PS1-deficient cells, indicating that PS1 function in modulating beta-catenin levels can be separated from its roles in facilitating gamma-secretase cleavage of beta-amyloid precursor protein and in Notch-1 signaling. Finally, we show an altered response to Wnt signaling and impaired ubiquitination of beta-catenin in the absence of PS1, a phenotype that may account for the increased stability in PS1-deficient cells. Thus, PS1 adds to the molecules that are known to regulate the rapid turnover of beta-catenin.[1]

References

 
WikiGenes - Universities