The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Tcf7  -  transcription factor 7, T cell specific

Mus musculus

Synonyms: AI465550, T cell factor-1, T-cell factor 1, T-cell-specific transcription factor 1, TCF-1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tcf7


High impact information on Tcf7

  • Maturity-onset diabetes of the young type 3 (MODY3) is caused by haploinsufficiency of hepatocyte nuclear factor-1alpha (encoded by TCF1) [6].
  • Suppressor T-cell inactivation of a helper T-cell factor [7].
  • Together, these data provide evidence for a redundant role of LEF-1 and TCF-1 in Wnt signaling during mouse development [8].
  • Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1 [9].
  • Thus, TCF-1, upon association with beta-catenin, transiently ensures the survival of immature T cells, which enables them to generate and edit T cell receptor (TCR) alpha chains and attempt TCR-mediated positive selection [10].

Chemical compound and disease context of Tcf7


Biological context of Tcf7


Anatomical context of Tcf7

  • Cells constitutively expressing the regulated gene Tcf7 were used to investigate its influence on BMP-induced osteoblast differentiation [16].
  • Together, these data show that LEF-1 and TCF-1 are redundant in the regulation of T cell differentiation and gene expression [9].
  • These findings suggest common and distinct functions of TCF-1 and LEF-1 during lymphocyte development [19].
  • Collectively these findings suggest (1) a functional role for Wnt-producing thymic epithelium in determining TCF/LEF-mediated transcriptional regulation in Fz-bearing thymocytes, and (2) a role for defined Wnt-Fz interactions at successive stages of thymocyte maturation [20].
  • Second, by high stringency Northern blotting and in situ hybridization, TCF-1 expression was shown to be confined to the thymus and to the T cell areas of the spleen [21].

Associations of Tcf7 with chemical compounds


Physical interactions of Tcf7


Regulatory relationships of Tcf7

  • First, conditioned medium containing Cristin/R-spondin proteins effectively induced reporter activity in a TCF-binding site-dependent manner [17].
  • Lithium treatment of BAEC induced beta-catenin stabilization but failed to activate the transcriptional activity of the beta-catenin/T-cell factor complex [29].
  • Inhibitor of beta-catenin and T cell factor (ICAT) inhibits Wnt signaling by interfering with the interaction between beta-catenin and T cell factor [30].
  • This IFN-beta-induced suppressor T-cell factor (IFN-TsF) has properties in common with SIRS [31].
  • We found that first-order suppressor T-cell factor ( TsF1 ) obtained from anti-mu treated animals expresses an Igh restriction pattern distinct from that observed with TsF1 from normal untreated mice [32].

Other interactions of Tcf7

  • Microarray and subsequent expression analyses in mice identified two transcription factors, Hey1 and Tcf7, with in vitro and in vivo expression characteristics very similar to Cbfa1 [16].
  • A contig of 24 YACs and 13 P1 clones has been assembled and spans approximately 3 Mb from Flt4 to Tcf7 [33].
  • A major downstream consequence of Wnt-1 signalling is the activation of beta-catenin/T-cell factor (TCF)-mediated transcription [34].
  • We have conditionally inactivated Apc in both the presence and absence of Tcf-1 to examine the function of these genes in both normal and neoplastic development [4].
  • We demonstrate here that LRP5/Frat1 interaction is involved in beta-catenin nuclear translocation and TCF-1 transcriptional activation [35].

Analytical, diagnostic and therapeutic context of Tcf7


  1. Differential formation of beta-catenin/lymphoid enhancer factor-1 DNA binding complex induced by nitric oxide in mouse colonic epithelial cells differing in adenomatous polyposis coli (Apc) genotype. Mei, J.M., Hord, N.G., Winterstein, D.F., Donald, S.P., Phang, J.M. Cancer Res. (2000) [Pubmed]
  2. The threshold level of adenomatous polyposis coli protein for mouse intestinal tumorigenesis. Li, Q., Ishikawa, T.O., Oshima, M., Taketo, M.M. Cancer Res. (2005) [Pubmed]
  3. Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of beta-catenin. Uematsu, K., Kanazawa, S., You, L., He, B., Xu, Z., Li, K., Peterlin, B.M., McCormick, F., Jablons, D.M. Cancer Res. (2003) [Pubmed]
  4. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Gallagher, R.C., Hay, T., Meniel, V., Naughton, C., Anderson, T.J., Shibata, H., Ito, M., Clevers, H., Noda, T., Sansom, O.J., Mason, J.O., Clarke, A.R. Oncogene (2002) [Pubmed]
  5. The Metastasis-Associated Gene S100A4 Is a Novel Target of beta-catenin/T-cell Factor Signaling in Colon Cancer. Stein, U., Arlt, F., Walther, W., Smith, J., Waldman, T., Harris, E.D., Mertins, S.D., Heizmann, C.W., Allard, D., Birchmeier, W., Schlag, P.M., Shoemaker, R.H. Gastroenterology (2006) [Pubmed]
  6. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Shih, D.Q., Bussen, M., Sehayek, E., Ananthanarayanan, M., Shneider, B.L., Suchy, F.J., Shefer, S., Bollileni, J.S., Gonzalez, F.J., Breslow, J.L., Stoffel, M. Nat. Genet. (2001) [Pubmed]
  7. Suppressor T-cell inactivation of a helper T-cell factor. Harwell, L., Marrack, P., Kappler, J.W. Nature (1977) [Pubmed]
  8. Wnt3a-/--like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Galceran, J., Fariñas, I., Depew, M.J., Clevers, H., Grosschedl, R. Genes Dev. (1999) [Pubmed]
  9. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Okamura, R.M., Sigvardsson, M., Galceran, J., Verbeek, S., Clevers, H., Grosschedl, R. Immunity (1998) [Pubmed]
  10. The beta-catenin--TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Ioannidis, V., Beermann, F., Clevers, H., Held, W. Nat. Immunol. (2001) [Pubmed]
  11. Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. Shao, J., Jung, C., Liu, C., Sheng, H. J. Biol. Chem. (2005) [Pubmed]
  12. The antigen-binding T cell factor PCl-F sensitizes mast cells for in vitro release of serotonin. Comparison with monoclonal IgE antibody. Meade, R., Van Lovern, H., Parmentier, H., Iverson, G.M., Askenase, P.W. J. Immunol. (1988) [Pubmed]
  13. Suppressor T cell circuits in contact sensitivity. II. Induction and characterization of an efferent-acting, antigen-specific, H-2-restricted, monoclonal T cell hybrid-derived suppressor factor specific for DNFB contact hypersensitivity. Miller, S.D. J. Immunol. (1984) [Pubmed]
  14. Interaction of antigen-specific T cell factors with unique "receptors" on the surface of mast cells: demonstration in vitro by an indirect rosetting technique. Kops, S.K., Ratzlaff, R.E., Meade, R., Iverson, G.M., Askenase, P.W. J. Immunol. (1986) [Pubmed]
  15. Immune serum from mice contact-sensitized with picryl chloride contains an antigen-specific T cell factor that transfers immediate cutaneous reactivity. Van Loveren, H., Ratzlaff, R.E., Kato, K., Meade, R., Ferguson, T.A., Iverson, G.M., Janeway, C.A., Askenase, P.W. Eur. J. Immunol. (1986) [Pubmed]
  16. Identification of novel regulators associated with early-phase osteoblast differentiation. de Jong, D.S., Vaes, B.L., Dechering, K.J., Feijen, A., Hendriks, J.M., Wehrens, R., Mummery, C.L., van Zoelen, E.J., Olijve, W., Steegenga, W.T. J. Bone Miner. Res. (2004) [Pubmed]
  17. Mouse Cristin/R-spondin Family Proteins Are Novel Ligands for the Frizzled 8 and LRP6 Receptors and Activate beta-Catenin-dependent Gene Expression. Nam, J.S., Turcotte, T.J., Smith, P.F., Choi, S., Yoon, J.K. J. Biol. Chem. (2006) [Pubmed]
  18. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Staal, F.J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B.C., Vainio, S., Nolan, G.P., Clevers, H. Eur. J. Immunol. (2001) [Pubmed]
  19. Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Held, W., Clevers, H., Grosschedl, R. Eur. J. Immunol. (2003) [Pubmed]
  20. Thymic epithelial cells provide WNT signals to developing thymocytes. Pongracz, J., Hare, K., Harman, B., Anderson, G., Jenkinson, E.J. Eur. J. Immunol. (2003) [Pubmed]
  21. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. Oosterwegel, M., van de Wetering, M., Dooijes, D., Klomp, L., Winoto, A., Georgopoulos, K., Meijlink, F., Clevers, H. J. Exp. Med. (1991) [Pubmed]
  22. Dietary retinoic acid supplementation stimulates intestinal tumour formation and growth in multiple intestinal neoplasia (Min)/+ mice. Møllersen, L., Paulsen, J.E., Olstørn, H.B., Knutsen, H.K., Alexander, J. Carcinogenesis (2004) [Pubmed]
  23. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Funato, Y., Michiue, T., Asashima, M., Miki, H. Nat. Cell Biol. (2006) [Pubmed]
  24. A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Nakamura, T., Sano, M., Songyang, Z., Schneider, M.D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  25. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Emami, K.H., Nguyen, C., Ma, H., Kim, D.H., Jeong, K.W., Eguchi, M., Moon, R.T., Teo, J.L., Oh, S.W., Kim, H.Y., Moon, S.H., Ha, J.R., Kahn, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation. Feng, Y., Bommer, G.T., Zhai, Y., Akyol, A., Hinoi, T., Winer, I., Lin, H.V., Cadigan, K.M., Cho, K.R., Fearon, E.R. Cancer Res. (2007) [Pubmed]
  27. Suppression of intestinal polyposis in Mdr1-deficient ApcMin/+ mice. Yamada, T., Mori, Y., Hayashi, R., Takada, M., Ino, Y., Naishiro, Y., Kondo, T., Hirohashi, S. Cancer Res. (2003) [Pubmed]
  28. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Toth, K., Djeha, H., Ying, B., Tollefson, A.E., Kuppuswamy, M., Doronin, K., Krajcsi, P., Lipinski, K., Wrighton, C.J., Wold, W.S. Cancer Res. (2004) [Pubmed]
  29. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. Mao, C.D., Hoang, P., DiCorleto, P.E. J. Biol. Chem. (2001) [Pubmed]
  30. Anteriorization of neural fate by inhibitor of beta-catenin and T cell factor (ICAT), a negative regulator of Wnt signaling. Satoh, K., Kasai, M., Ishidao, T., Tago, K., Ohwada, S., Hasegawa, Y., Senda, T., Takada, S., Nada, S., Nakamura, T., Akiyama, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  31. Activation of a suppressor T-cell pathway by interferon. Aune, T.M., Pierce, C.W. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  32. Chronic treatment with rabbit anti-mouse mu-chain antibody alters the characteristic immunoglobulin heavy-chain restriction of murine suppressor T-cell factors. Sy, M.S., Lowy, A., HayGlass, K., Janeway, C.A., Gurish, M., Greene, M.I., Benacerraf, B. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  33. Construction of a 3-Mb contig and partial transcript map of the central region of mouse chromosome 11. Watkins-Chow, D.E., Douglas, K.R., Buckwalter, M.S., Probst, F.J., Camper, S.A. Genomics (1997) [Pubmed]
  34. Murine Nr4a1 and Herpud1 are up-regulated by Wnt-1, but the homologous human genes are independent from beta-catenin activation. Chtarbova, S., Nimmrich, I., Erdmann, S., Herter, P., Renner, M., Kitajewski, J., Müller, O. Biochem. J. (2002) [Pubmed]
  35. Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. Hay, E., Faucheu, C., Suc-Royer, I., Touitou, R., Stiot, V., Vayssière, B., Baron, R., Roman-Roman, S., Rawadi, G. J. Biol. Chem. (2005) [Pubmed]
  36. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. Staal, F.J., Weerkamp, F., Baert, M.R., van den Burg, C.M., van Noort, M., de Haas, E.F., van Dongen, J.J. J. Immunol. (2004) [Pubmed]
  37. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. Surendran, K., Schiavi, S., Hruska, K.A. J. Am. Soc. Nephrol. (2005) [Pubmed]
  38. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B. J. Biol. Chem. (2005) [Pubmed]
  39. High-level, beta-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue. Lipinski, K.S., Djeha, A.H., Ismail, T., Mountain, A., Young, L.S., Wrighton, C.J. Mol. Ther. (2001) [Pubmed]
WikiGenes - Universities