The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Psen1  -  presenilin 1

Mus musculus

Synonyms: Ad3h, PS-1, PS1, Presenilin-1, Protein S182, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Psen1

  • In contrast to PS1(-/-) mice, PS2(-/-) mice are viable and fertile and develop only mild pulmonary fibrosis and hemorrhage with age [1].
  • The mice further develop a benign skin hyperplasia similar to human seborrheic keratosis as opposed to malignant keratocarcinomata observed in skin-specific PS1 'full' knockouts [2].
  • In contrast, progression of LTP impairment correlated with the deterioration of working memory, suggesting that percentage of potentiation might be an indicator of the cognitive decline and disease progression in the APP/PS1 mice [3].
  • To characterize the putative gamma-secretase activity associated with presenilins, lysates from human neuroblastoma SH-SY5Y and human brain homogenates were incubated with biotin derivatives of pepstatin, followed by immunoprecipitation of PS and associated proteins, and biotin detection by Western blotting [4].
  • Mice heterozygous for PS1 and homozygous for PS2 (PS1(+/)(-)PS2(-)(/)(-)) developed splenomegaly with severe granulocyte infiltration [5].
 

Psychiatry related information on Psen1

  • These results indicate that the presenilin mutations probably cause Alzheimer's disease through a gain of deleterious function that increases the amount of A beta42(43) in the brain [6].
  • PS1 mice exhibited a similar degree of neuronal loss in CA1 but minimal memory deficit and no impairment of glucose utilization compared to nTg mice [7].
  • Short-term PS1 inactivation in young PS1 cKO;APP Tg mice rescued deficits in contextual fear conditioning and serial spatial reversal learning in a water maze, which were associated with APP Tg mice [8].
  • Serpents on the road to dementia and death. Accumulating evidence from several studies points to the normal function of presenilin 1 and suggests how the mutant protein contributes to deposition of amyloid plaques in Alzheimer's disease [9].
 

High impact information on Psen1

  • In experiments with PS1/2 double knockout (DKO) mouse embryonic fibroblasts (MEFs), we find that presenilins account for approximately 80% of passive Ca(2+) leak from the endoplasmic reticulum [10].
  • Deficient Ca(2+) signaling in DKO MEFs can be rescued by expression of wild-type PS1 or PS2 but not by expression of PS1-M146V or PS2-N141I mutants [10].
  • Our studies define how presenilin-dependent nuclear signaling by a receptor tyrosine kinase directly regulates gene transcription and cell fate [11].
  • Cerebral deposition of beta-amyloid (Abeta) peptides is an invariant pathological hallmark in brains of patients with Alzheimer's disease (AD) and transgenic mice coexpressing familial AD-linked APP and PS1 variants [12].
  • Presenilin1 (PS1), a protein implicated in Alzheimer's disease (AD), forms complexes with N-cadherin, a transmembrane protein with important neuronal and synaptic functions [13].
 

Chemical compound and disease context of Psen1

  • To prove that PS1 was sufficient to mediate normal glutamate-induced calcium responses, we used a Semliki-forest virus (SFV) vector to express wild-type PS1 in PS1 knock-out neurons [14].
  • In a functional presenilin-1 variant (carrying a deletion in exon 9) that is associated with familial Alzheimer's disease and which does not require this cleavage, the Asp 385 --> Ala mutation still inhibited gamma-secretase activity [15].
  • To clarify the underlying molecular mechanism through which presenilin-1 is involved in the pathogenesis of this neurodegenerative disorder, the regional and cellular transcription profile of this gene was characterized in primary cells isolated from the murine brain by Northern blot hybridization using digoxigenin-labeled riboprobes [16].
  • A pigmented subclone of Cloudman S91 melanoma cells, PS1-wild type, can grow in medium lacking tyrosine [17].
  • Neurotoxic mechanisms triggered by Alzheimer's disease-linked mutant M146L presenilin 1: involvement of NO synthase via a novel pertussis toxin target [18].
 

Biological context of Psen1

  • The Psen1 C-terminal proteolytic fragment (CTF) is present at varying levels during embryogenesis, indicating the existence of developmental control mechanisms regulating its production [19].
  • Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes [20].
  • PS1-/- embryos exhibited abnormal patterning of the axial skeleton and spinal ganglia, phenotypes traced to defects in somite segmentation and differentiation [21].
  • Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1 [22].
  • Although basal synaptic transmission, long-term potentiation, and long-term depression at hippocampal area CA1 synapses are normal, the PS1 cKO mice exhibit subtle but significant deficits in long-term spatial memory [23].
 

Anatomical context of Psen1

  • Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm [24].
  • The mechanism by which mutations in the presenilin (PS) genes cause the most aggressive form of early-onset Alzheimer's disease (AD) is unknown, but fibroblasts from mutation carriers secrete increased levels of the amyloidogenic A beta 42 peptide, the main component of AD plaques [25].
  • Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm [21].
  • We now document that the Abeta1-42(43)/Abeta1-40 ratio in the conditioned media of independent N2a cell lines expressing three FAD-linked PS1 variants is uniformly elevated relative to cells expressing similar levels of wild-type PS1 [26].
  • These results demonstrate that inactivation of PS1 function in the adult cerebral cortex leads to reduced Abeta generation and subtle cognitive deficits without affecting expression of Notch downstream genes [23].
 

Associations of Psen1 with chemical compounds

  • To investigate the amyloidogenic function of PS2 more directly, we mutagenized a conserved aspartate at position 366 to alanine, because the corresponding residue of PS1 is known to be required for its amyloidogenic function [27].
  • By using a truncation protocol and alanine scanning, we identified Tyr-288 in the PS1 N-terminal fragment as critical for PS-dependent intramembrane proteolysis [28].
  • Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner [29].
  • By 8 months, however, APP/PS1 mice developed selective impairment of spatial memory, which was significantly worse at 22 months and was accompanied by reduced glucose utilization in the hippocampus and a 35.8% dropout of neurons in the CA1 region [7].
  • In addition, the intracellular generation of these A beta42 species in wt and mutated PS1-induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular A beta x-42 versus inhibition of intracellular A beta1-42 generation [30].
  • Alanine scanning mutagenesis of areas flanking Leu(172), Thr(281), and Leu(282) identified additional amino acids that affect inhibitor potency of not only these sulfonamides but also nonsulfonamide inhibitors, without affecting Abeta production and presenilin endoproteolysis [31].
 

Physical interactions of Psen1

  • Presenilin interacts with nicastrin, APH-1 and PEN-2 (ref. 6), all of which are required for gamma-secretase function [32].
  • All three mutant PS1 molecules were incorporated into gamma-secretase complexes and stabilized Pen-2 in PS null cells [28].
  • However, the precise individual roles of the three cofactors in the PS complex in Abeta generation remain to be clarified [33].
  • Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells [34].
  • Recently, beta-catenin has been shown to interact with PS1. beta-catenin is essential for the Wnt signalling pathway [35].
 

Enzymatic interactions of Psen1

  • Presenilin-1 D257A and D385A mutants fail to cleave Notch in their endoproteolyzed forms, but only presenilin-1 D385A mutant can restore its gamma-secretase activity with the compensatory overexpression of normal C-terminal fragment [36].
 

Regulatory relationships of Psen1

  • We have also observed that loss of PS1 prevents protein kinase C or extracellular regulated kinase from increasing production of the APP cleavage products, APPs, and APP C-terminal fragments [37].
  • Presenilin (PS) proteins control the proteolytic cleavage that precedes nuclear access of the Notch intracellular domain [38].
  • Conversely, PS1 specifically represses LEF-dependent transcription in a dose-dependent manner [39].
  • Thus, PS1 adds to the molecules that are known to regulate the rapid turnover of beta-catenin [39].
  • These findings suggest that PS-1 is involved in the differentiation and the cell cycle control of neuronal precursor cells in the ventricular proliferating zone of the neocortical primordium [40].
 

Other interactions of Psen1

  • Abeta peptides are derived from the amyloid precursor protein (APP) by sequential proteolysis, catalysed by the aspartyl protease BACE, followed by presenilin-dependent gamma-secretase cleavage [32].
  • The subcellular localization of PLD1 is altered, and PLD enzymatic activity is reduced in cells expressing familial Alzheimer's disease (FAD) PS1 mutations compared with PS1wt cells [41].
  • Here, we investigated the functions of Nct within the PS1/gamma-secretase complex [42].
  • Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities [43].
  • Key words: Cell fate, delta, jagged, presenilin, spermatogenesis [44].
 

Analytical, diagnostic and therapeutic context of Psen1

  • In situ hybridization analysis in adult mouse brain revealed that PS1 and PS2 mRNAs are enriched in neurons of the hippocampal formation and entorhinal cortex [45].
  • Semi-quantitative PCR of reverse-transcribed RNA (RT-PCR) analysis revealed that PS1 and PS2 mRNA are expressed ubiquitously and at comparable levels in most human and mouse tissues, including adult brain [45].
  • We also showed that PS-1 NTF but not CTF forms strong high molecular weight aggregates in SDS-PAGE [36].
  • In addition, Pen-2 protein levels correlated with PS1 levels not only in cell culture but in transgenic mouse models as well [46].
  • We investigated this issue by using gene targeting with the Cre-lox system to introduce an FAD-linked P264L mutation into the endogenous mouse PS-1 gene, an approach that maintains normal regulatory controls over expression [47].

References

  1. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Herreman, A., Hartmann, D., Annaert, W., Saftig, P., Craessaerts, K., Serneels, L., Umans, L., Schrijvers, V., Checler, F., Vanderstichele, H., Baekelandt, V., Dressel, R., Cupers, P., Huylebroeck, D., Zwijsen, A., Van Leuven, F., De Strooper, B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Tournoy, J., Bossuyt, X., Snellinx, A., Regent, M., Garmyn, M., Serneels, L., Saftig, P., Craessaerts, K., De Strooper, B., Hartmann, D. Hum. Mol. Genet. (2004) [Pubmed]
  3. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Trinchese, F., Liu, S., Battaglia, F., Walter, S., Mathews, P.M., Arancio, O. Ann. Neurol. (2004) [Pubmed]
  4. Aspartyl protease inhibitor pepstatin binds to the presenilins of Alzheimer's disease. Evin, G., Sharples, R.A., Weidemann, A., Reinhard, F.B., Carbone, V., Culvenor, J.G., Holsinger, R.M., Sernee, M.F., Beyreuther, K., Masters, C.L. Biochemistry (2001) [Pubmed]
  5. Myeloproliferative disease in mice with reduced presenilin gene dosage: effect of gamma-secretase blockage. Qyang, Y., Chambers, S.M., Wang, P., Xia, X., Chen, X., Goodell, M.A., Zheng, H. Biochemistry (2004) [Pubmed]
  6. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M.N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., Younkin, S. Nature (1996) [Pubmed]
  7. Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. Sadowski, M., Pankiewicz, J., Scholtzova, H., Ji, Y., Quartermain, D., Jensen, C.H., Duff, K., Nixon, R.A., Gruen, R.J., Wisniewski, T. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  8. Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. Saura, C.A., Chen, G., Malkani, S., Choi, S.Y., Takahashi, R.H., Zhang, D., Gouras, G.K., Kirkwood, A., Morris, R.G., Shen, J. J. Neurosci. (2005) [Pubmed]
  9. Serpents on the road to dementia and death. Accumulating evidence from several studies points to the normal function of presenilin 1 and suggests how the mutant protein contributes to deposition of amyloid plaques in Alzheimer's disease. Beyreuther, K., Masters, C.L. Nat. Med. (1997) [Pubmed]
  10. Presenilins Form ER Ca(2+) Leak Channels, a Function Disrupted by Familial Alzheimer's Disease-Linked Mutations. Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S.F., Hao, Y.H., Serneels, L., De Strooper, B., Yu, G., Bezprozvanny, I. Cell (2006) [Pubmed]
  11. Presenilin-Dependent ErbB4 Nuclear Signaling Regulates the Timing of Astrogenesis in the Developing Brain. Sardi, S.P., Murtie, J., Koirala, S., Patten, B.A., Corfas, G. Cell (2006) [Pubmed]
  12. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Lazarov, O., Robinson, J., Tang, Y.P., Hairston, I.S., Korade-Mirnics, Z., Lee, V.M., Hersh, L.B., Sapolsky, R.M., Mirnics, K., Sisodia, S.S. Cell (2005) [Pubmed]
  13. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Marambaud, P., Wen, P.H., Dutt, A., Shioi, J., Takashima, A., Siman, R., Robakis, N.K. Cell (2003) [Pubmed]
  14. Presenilin-1 deficiency impairs glutamate-evoked intracellular calcium responses in neurons. Yang, Y., Cook, D.G. Neuroscience (2004) [Pubmed]
  15. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., Selkoe, D.J. Nature (1999) [Pubmed]
  16. Widespread neuronal expression of the presenilin-1 early-onset Alzheimer's disease gene in the murine brain. Cribbs, D.H., Chen, L.S., Bende, S.M., LaFerla, F.M. Am. J. Pathol. (1996) [Pubmed]
  17. Phenylalanine hydroxylase in melanoma cells. Breakefield, X.O., Castiglione, C.M., Halaban, R., Pawelek, J., Shiman, R. J. Cell. Physiol. (1978) [Pubmed]
  18. Neurotoxic mechanisms triggered by Alzheimer's disease-linked mutant M146L presenilin 1: involvement of NO synthase via a novel pertussis toxin target. Hashimoto, Y., Ito, Y., Arakawa, E., Kita, Y., Terashita, K., Niikura, T., Nishimoto, I. J. Neurochem. (2002) [Pubmed]
  19. Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos. Nornes, S., Groth, C., Camp, E., Ey, P., Lardelli, M. Exp. Cell Res. (2003) [Pubmed]
  20. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Holcomb, L., Gordon, M.N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C.M., Eckman, C., Younkin, S., Hsiao, K., Duff, K. Nat. Med. (1998) [Pubmed]
  21. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Wong, P.C., Zheng, H., Chen, H., Becher, M.W., Sirinathsinghji, D.J., Trumbauer, M.E., Chen, H.Y., Price, D.L., Van der Ploeg, L.H., Sisodia, S.S. Nature (1997) [Pubmed]
  22. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Li, Y.M., Xu, M., Lai, M.T., Huang, Q., Castro, J.L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil, J.G., Register, R.B., Sardana, M.K., Shearman, M.S., Smith, A.L., Shi, X.P., Yin, K.C., Shafer, J.A., Gardell, S.J. Nature (2000) [Pubmed]
  23. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Yu, H., Saura, C.A., Choi, S.Y., Sun, L.D., Yang, X., Handler, M., Kawarabayashi, T., Younkin, L., Fedeles, B., Wilson, M.A., Younkin, S., Kandel, E.R., Kirkwood, A., Shen, J. Neuron (2001) [Pubmed]
  24. The role of presenilin 1 during somite segmentation. Koizumi , K., Nakajima, M., Yuasa, S., Saga, Y., Sakai, T., Kuriyama, T., Shirasawa, T., Koseki, H. Development (2001) [Pubmed]
  25. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George Hyslop, P., Selkoe, D.J. Nat. Med. (1997) [Pubmed]
  26. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D., Slunt, H.H., Wang, R., Seeger, M., Levey, A.I., Gandy, S.E., Copeland, N.G., Jenkins, N.A., Price, D.L., Younkin, S.G., Sisodia, S.S. Neuron (1996) [Pubmed]
  27. A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. Steiner, H., Duff, K., Capell, A., Romig, H., Grim, M.G., Lincoln, S., Hardy, J., Yu, X., Picciano, M., Fechteler, K., Citron, M., Kopan, R., Pesold, B., Keck, S., Baader, M., Tomita, T., Iwatsubo, T., Baumeister, R., Haass, C. J. Biol. Chem. (1999) [Pubmed]
  28. Functional domains in presenilin 1: the Tyr-288 residue controls gamma-secretase activity and endoproteolysis. Laudon, H., Karlström, H., Mathews, P.M., Farmery, M.R., Gandy, S.E., Lundkvist, J., Lendahl, U., Näslund, J. J. Biol. Chem. (2004) [Pubmed]
  29. Intracellular retention of caveolin 1 in presenilin-deficient cells. Wood, D.R., Nye, J.S., Lamb, N.J., Fernandez, A., Kitzmann, M. J. Biol. Chem. (2005) [Pubmed]
  30. Presenilin 1 mutations linked to familial Alzheimer's disease increase the intracellular levels of amyloid beta-protein 1-42 and its N-terminally truncated variant(s) which are generated at distinct sites. Sudoh, S., Kawamura, Y., Sato, S., Wang, R., Saido, T.C., Oyama, F., Sakaki, Y., Komano, H., Yanagisawa, K. J. Neurochem. (1998) [Pubmed]
  31. Identification of gamma-secretase inhibitor potency determinants on presenilin. Zhao, B., Yu, M., Neitzel, M., Marugg, J., Jagodzinski, J., Lee, M., Hu, K., Schenk, D., Yednock, T., Basi, G. J. Biol. Chem. (2008) [Pubmed]
  32. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Phiel, C.J., Wilson, C.A., Lee, V.M., Klein, P.S. Nature (2003) [Pubmed]
  33. PEN-2 enhances gamma-cleavage after presenilin heterodimer formation. Shiraishi, H., Sai, X., Wang, H.Q., Maeda, Y., Kurono, Y., Nishimura, M., Yanagisawa, K., Komano, H. J. Neurochem. (2004) [Pubmed]
  34. Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells. Suga, K., Saito, A., Tomiyama, T., Mori, H., Akagawa, K. J. Neurochem. (2005) [Pubmed]
  35. Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of beta-catenin phosphorylation. Kawamura, Y., Kikuchi, A., Takada, R., Takada, S., Sudoh, S., Shibamoto, S., Yanagisawa, K., Komano, H. Eur. J. Biochem. (2001) [Pubmed]
  36. Presenilin-1 D257A and D385A mutants fail to cleave Notch in their endoproteolyzed forms, but only presenilin-1 D385A mutant can restore its gamma-secretase activity with the compensatory overexpression of normal C-terminal fragment. Kim, H., Ki, H., Park, H.S., Kim, K. J. Biol. Chem. (2005) [Pubmed]
  37. Regulation of amyloid precursor protein processing by presenilin 1 (PS1) and PS2 in PS1 knockout cells. Palacino, J.J., Berechid, B.E., Alexander, P., Eckman, C., Younkin, S., Nye, J.S., Wolozin, B. J. Biol. Chem. (2000) [Pubmed]
  38. Identification and characterization of presenilin-independent Notch signaling. Berechid, B.E., Kitzmann, M., Foltz, D.R., Roach, A.H., Seiffert, D., Thompson, L.A., Olson, R.E., Bernstein, A., Donoviel, D.B., Nye, J.S. J. Biol. Chem. (2002) [Pubmed]
  39. Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. Soriano, S., Kang, D.E., Fu, M., Pestell, R., Chevallier, N., Zheng, H., Koo, E.H. J. Cell Biol. (2001) [Pubmed]
  40. Impaired cell cycle control of neuronal precursor cells in the neocortical primordium of presenilin-1-deficient mice. Yuasa, S., Nakajima, M., Aizawa, H., Sahara, N., Koizumi, K., Sakai, T., Usami, M., Kobayashi, S., Kuroyanagi, H., Mori, H., Koseki, H., Shirasawa, T. J. Neurosci. Res. (2002) [Pubmed]
  41. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons. Cai, D., Zhong, M., Wang, R., Netzer, W.J., Shields, D., Zheng, H., Sisodia, S.S., Foster, D.A., Gorelick, F.S., Xu, H., Greengard, P. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  42. Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. Zhang, Y.W., Luo, W.J., Wang, H., Lin, P., Vetrivel, K.S., Liao, F., Li, F., Wong, P.C., Farquhar, M.G., Thinakaran, G., Xu, H. J. Biol. Chem. (2005) [Pubmed]
  43. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities. Lai, M.T., Chen, E., Crouthamel, M.C., DiMuzio-Mower, J., Xu, M., Huang, Q., Price, E., Register, R.B., Shi, X.P., Donoviel, D.B., Bernstein, A., Hazuda, D., Gardell, S.J., Li, Y.M. J. Biol. Chem. (2003) [Pubmed]
  44. Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. Dirami, G., Ravindranath, N., Achi, M.V., Dym, M. J. Androl. (2001) [Pubmed]
  45. Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. Lee, M.K., Slunt, H.H., Martin, L.J., Thinakaran, G., Kim, G., Gandy, S.E., Seeger, M., Koo, E., Price, D.L., Sisodia, S.S. J. Neurosci. (1996) [Pubmed]
  46. Presenilin modulates Pen-2 levels posttranslationally by protecting it from proteasomal degradation. Crystal, A.S., Morais, V.A., Fortna, R.R., Carlin, D., Pierson, T.C., Wilson, C.A., Lee, V.M., Doms, R.W. Biochemistry (2004) [Pubmed]
  47. Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. Siman, R., Reaume, A.G., Savage, M.J., Trusko, S., Lin, Y.G., Scott, R.W., Flood, D.G. J. Neurosci. (2000) [Pubmed]
 
WikiGenes - Universities