The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner.

Nitric oxide synthases ( NOS) convert L-arginine and N(omega)-hydroxy-L-arginine to nitric oxide (*NO) and/or nitroxyl (NO(-)) in a NADPH-dependent fashion. Subsequently, *NO/superoxide (O(2-)-derived peroxynitrite (ONOO(-)) consumes one additional mol NADPH. The related stoichiometry of NO(-) and NADPH is unclear. We here describe that NO(-) also oxidizes NADPH in a concentration-dependent manner. In the presence of superoxide dismutase (SOD), which also converts NO(-) to *NO, nitrite accumulation was almost doubled and no oxidation of NADPH was observed. Nitrate yield from NO(-) was low, arguing against intermediate ONOO(-) formation. Thus, biologically formed NO(-) may function as an effective pro-oxidant unless scavenged by SOD and affect the apparent NADPH stoichiometry of the NOS reaction.[1]

References

  1. Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner. Reif, A., Zecca, L., Riederer, P., Feelisch, M., Schmidt, H.H. Free Radic. Biol. Med. (2001) [Pubmed]
 
WikiGenes - Universities