Identification of critical residues in bovine IFNAR-1 responsible for interferon binding.
Interferons have antiviral, antigrowth and immunomodulatory effects. The human type I interferons, IFN-alpha, IFN-beta, and IFN-omega, induce somewhat different cellular effects but act through a common receptor complex, IFNAR, composed of subunits IFNAR-1 and IFNAR-2. Human IFNAR-2 binds all type I IFNs but with lower affinity and different specificity than the IFNAR complex. Human IFNAR-1 has low intrinsic binding of human IFNs but strongly affects the affinity and differential ligand specificity of the IFNAR complex. Understanding IFNAR-1 interactions with the interferons is critical to elucidating the differential ligand specificity and activation by type I IFNs. However, studies of ligand interactions with human IFNAR-1 are compromised by its low affinity. The homologous bovine IFNAR-1 serendipitously binds human IFN-alphas with nanomolar affinity. Exploiting its strong binding of human IFN-alpha2, we have identified residues important for ligand binding. Mutagenesis of any of five aromatic residues of bovine IFNAR-1 caused strong decreases in ligand binding, whereas mutagenesis of proximal neutral or charged residues had smaller effects. These residues were mapped onto a homology model of IFNAR-1 to identify the ligand-binding face of IFNAR-1, which is consistent with previous structure/function studies of human IFNAR-1. The topology of IFNAR-1/IFN interactions appears novel when compared with previously studied cytokine receptors.[1]References
- Identification of critical residues in bovine IFNAR-1 responsible for interferon binding. Cutrone, E.C., Langer, J.A. J. Biol. Chem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg