The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of the substrate specificity-conferring amino acid residues of 4-coumarate:coenzyme A ligase allows the rational design of mutant enzymes with new catalytic properties.

4-Coumarate:coenzyme A ligases (4CLs) generally use, in addition to coumarate, caffeate and ferulate as their main substrates. However, the recently cloned Arabidopsis thaliana isoform At4CL2 is exceptional because it has no appreciable activity with ferulate. On the basis of information obtained from the crystal structure of the phenylalanine-activating domain of gramicidin S-synthetase, 10 amino acid residues were identified that may form the substrate binding pocket of 4CL. Among these amino acids, representing the putative "substrate specificity motif," only one residue, Met(293), was not conserved in At4CL2, compared with At4CL1 and At4CL3, two isoforms using ferulate. Substitution of Met(293) or Lys(320), another residue of the putative substrate specificity motif, which in the predicted three-dimensional structure is located in close proximity to Met(293), by smaller amino acids converted At4CL2 to an enzyme capable of using ferulate. The activity with caffeate was not or only moderately affected. Conversely, substitution of Met(293) by bulky aromatic amino acids increased the apparent affinity (K(m)) for caffeate up to 10-fold, whereas single substitutions of Val(294) did not affect substrate use. The results support our structural assumptions and suggest that the amino acid residues 293 and 320 of At4CL2 directly interact with the 3-methoxy group of the phenolic substrate and therefore allow a first insight into the structural principles determining substrate specificity of 4CL.[1]

References

 
WikiGenes - Universities