The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Inhibition of NF-kappa B by S-nitrosylation.

It is not clear if redox regulation of transcription is the consequence of direct redox-related modifications of transcription factors, or if it occurs at some other redox-sensitive step. One obstacle has been the inability to demonstrate redox-related modifications of transcription factors in vivo. The redox-sensitive transcriptional activator NF-kappaB ( p50- p65) is a case in point. Its activity in vitro can be inhibited by S-nitrosylation of a critical thiol in the DNA-interacting p50 subunit, but modulation of NF-kappaB activity by nitric oxide synthase (NOS) has been attributed to other mechanisms. Herein we show that cellular NF-kappaB activity is in fact regulated by S-nitrosylation. We observed that both S-nitrosocysteine and cytokine-activated NOS2 inhibited NF-kappaB in human respiratory cells or murine macrophages. This inhibition was reversed by addition of the denitrosylating agent dithiothreitol to cellular extracts, whereas NO bioactivity did not affect the TNFalpha- induced degradation of IkappaBalpha or the nuclear translocation of p65. Recapitulation of these conditions in vitro resulted in S-nitrosylation of recombinant p50, thereby inhibiting its binding to DNA, and this effect was reversed by dithiothreitol. Further, an increase in S-nitrosylated p50 was detected in cells, and the level was modulated by TNFalpha. Taken together, these data suggest that S-nitrosylation of p50 is a physiological mechanism of NF-kappaB regulation.[1]

References

  1. Inhibition of NF-kappa B by S-nitrosylation. Marshall, H.E., Stamler, J.S. Biochemistry (2001) [Pubmed]
 
WikiGenes - Universities