The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mechanism of the calcium-dependent multimerization of synaptotagmin VII mediated by its first and second C2 domains.

The Ca(2+)-dependent oligomerization activity of the second C2 (C2B) domain of synaptotagmin I (Syt I) has been hypothesized to regulate neurotransmitter release. We previously showed that the cytoplasmic domains of several other Syt isoforms also show Ca(2+)-dependent oligomerization activity (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the involvement of their C2 domains in Ca(2+)-dependent oligomerization. In this study, we analyzed the Ca(2+)-dependent oligomerization properties of the first (C2A) and the second C2 (C2B) domains of Syt VII. Unlike Syt I, both C2 domains of Syt VII contribute to Ca(2+)-dependent homo- and hetero-oligomerization with other isoforms. For instance, the Syt VII C2A domain Ca(2+)-dependently binds itself and the C2A domain of Syt VI but not its C2B domain, whereas the Syt VII C2B domain Ca(2+)-dependently binds itself and the C2B domain of Syt II but not its C2A domain. In addition, we showed by gel filtration that a single Syt VII C2 domain is sufficient to form a Ca(2+)-dependent multimer of very high molecular weight. Because of this "two handed" structure, the Syt VII cytoplasmic domain has been found to show the strongest Ca(2+)-dependent multimerization activity in the Syt family. We also identified Asn-328 in the C2B domain as a crucial residue for the efficient Ca(2+)-dependent switch for multimerization by site-directed mutagenesis. Our results suggest that Syt VII is a specific isoform that can cluster different Syt isoforms with two hands in response to Ca(2+).[1]

References

 
WikiGenes - Universities