The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Hemodynamics and gas exchange during carbon dioxide insufflation for totally endoscopic coronary artery bypass grafting.

BACKGROUND: In addition to single-lung ventilation (SLV), positive-pressure CO2 insufflation is mandatory for totally endoscopic coronary artery bypass grafting. Studies on the effects of unilateral CO2 insufflation on hemodynamics produced controversial results, and bilateral insufflation has not been studied to our knowledge. The present study sought to investigate hemodynamics and gas exchange during unilateral and bilateral CO2 insufflation in patients who underwent totally endoscopic coronary artery bypass grafting. METHODS: Eleven hemodynamic and gas exchange variables were monitored during 22 totally endoscopic coronary artery bypass grafting procedures with unilateral (n = 17) or bilateral (n = 5) CO2 insufflation at a pressure of 10 to 12 mm Hg. Data were obtained at baseline with double-lung ventilation, after institution of SLV, during insufflation, after cardiopulmonary bypass during SLV, and after return to double-lung ventilation. RESULTS: Arterial oxygen tension decreased significantly during SLV, whereas the peak inspiratory pressure increased. In addition, central venous pressure and heart rate increased significantly during insufflation, but mean arterial pressure remained unchanged. Although the end-tidal CO2 pressure did not change, arterial carbon dioxide tension increased progressively to a maximum of 44.6 +/- 5.9 mm Hg during unilateral insufflation, and 55.7 +/- 14.6 mm Hg during bilateral insufflation (p < 0.05 versus baseline and between groups). Mixed venous oxygen saturation declined during SLV regardless of CO2 insufflation and recovered to baseline once double-lung ventilation was restarted. Left and right ventricular ejection fractions remained unaltered. No patient required inotropic or vasopressor support. CONCLUSIONS: Carbon dioxide insufflation for totally endoscopic coronary artery bypass grafting with SLV had no adverse effects on hemodynamics. In contrast to a moderate increase of arterial carbon dioxide tension during unilateral insufflation, markedly elevated arterial carbon dioxide tension levels remain a cause of concern during bilateral insufflation.[1]

References

  1. Hemodynamics and gas exchange during carbon dioxide insufflation for totally endoscopic coronary artery bypass grafting. Byhahn, C., Mierdl, S., Meininger, D., Wimmer-Greinecker, G., Matheis, G., Westphal, K. Ann. Thorac. Surg. (2001) [Pubmed]
 
WikiGenes - Universities