The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes.

Annexin A7 has been proposed to function in the fusion of vesicles, acting as a Ca(2+) channel and as Ca(2+)-activated GTPase, thus inducing Ca(2+)/GTP-dependent secretory events. To understand the function of annexin A7, we have performed targeted disruption of the Anxa7 gene in mice. Matings between heterozygous mice produced offspring showing a normal Mendelian pattern of inheritance, indicating that the loss of annexin A7 did not interfere with viability in utero. Mice lacking annexin A7 showed no obvious phenotype and were fertile. To assay for exocytosis, insulin secretion from isolated islets of Langerhans was examined. Ca(2+)-induced and cyclic AMP-mediated potentiation of insulin secretion was unchanged in the absence of annexin A7, suggesting that it is not directly implicated in vesicle fusion. Ca(2+) regulation studied in isolated cardiomyocytes, showed that while cells from early embryos displayed intact Ca(2+) homeostasis and expressed all of the components required for excitation-contraction coupling, cardiomyocytes from adult Anxa7(-/-) mice exhibited an altered cell shortening-frequency relationship when stimulated with high frequencies. This suggests a function for annexin A7 in electromechanical coupling, probably through Ca(2+) homoeostasis.[1]

References

  1. Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes. Herr, C., Smyth, N., Ullrich, S., Yun, F., Sasse, P., Hescheler, J., Fleischmann, B., Lasek, K., Brixius, K., Schwinger, R.H., Fässler, R., Schröder, R., Noegel, A.A. Mol. Cell. Biol. (2001) [Pubmed]
 
WikiGenes - Universities