The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Life-history changes that accompany the transition from sexual to parthenogenetic reproduction in Drosophila mercatorum.

In spite of the predicted genetic and ecological costs of sex, most natural populations maintain sexual reproduction, even those capable of facultative parthenogenesis. Unfertilized eggs from natural populations of Drosophila mercatorum occasionally develop into viable adults, but obligately parthenogenetic populations are unknown in this species. To evaluate the microevolutionary forces that both favor and constrain the evolution of parthenogenesis in D. mercatorum, we have measured parthenogenetic rates across a natural, sexually reproducing population and characterized the life-history changes that accompany the transition from sexual to parthenogenetic reproduction in laboratory strains. A highly significant difference in parthenogenetic rate was found between two populations in close geographic proximity, with increased rate found with lower population density. Laboratory strains of parthenogenetic females suffered increased mortality and reduced egg viability relative to their virgin counterparts from a sexual strain. Lifetime egg production was similar across all strains, but a shift in peak egg production to an earlier age also occurred. The combination of these life-history traits resulted in a higher net reproductive value for sexual females, but because they also had a longer generation time, intrinsic rate of increase was not as dramatically different from parthenogenetic females. In environments with high early mortality, there may be no fitness disadvantage to parthenogenesis, but the predicted ecological advantage of a twofold increase in intrinsic rate of increase was not realized. These results support the theory of Stalker (1956) that parthenogenesis is favored in environments in which sexual reproduction is difficult or impossible.[1]


WikiGenes - Universities