The class C Vps complex functions at multiple stages of the vacuolar transport pathway.
The Class C Vps complex, consisting of Vps11, Vps16, Vps18, and Vps33, is required for SNARE-mediated membrane fusion at the lysosome-like yeast vacuole. However, Class C vps mutants display more severe and pleiotropic phenotypes than mutants specifically defective in endosome-to-vacuole transport, suggesting that there are additional functions for the Class C Vps complex. A SNARE double mutant which is defective for both Golgi-to-endosome and endosome-to-vacuole trafficking replicates many of the phenotypes observed in Class C vps mutants. We show that genetic interactions exist between Class C vps alleles and alleles of the Class D vps group, which are defective in the docking and fusion of Golgi-derived vesicles at the endosome. Moreover, the Class D protein Vac1 was found to physically bind to the Class C Vps complex through a direct association with Vps11. Finally, using a random mutagenic screen, a temperature-conditional allele which shares many of the phenotypes of mutants which are selectively defective in Golgi-to-endosome trafficking was isolated (vps11-3ts). Collectively, these results indicate that the Class C Vps complex plays essential roles in the processes of membrane docking and fusion at both the Golgi-to-endosome and endosome-to-vacuole stages of transport.[1]References
- The class C Vps complex functions at multiple stages of the vacuolar transport pathway. Peterson, M.R., Emr, S.D. Traffic (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg