The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Catalysis of the methanolysis of activated amides by divalent and trivalent metal ions. The effect of Zn(2+), Co(2+), and La(3+) on the methanolysis of acetylimidazole and its (NH(3))(5)Co(III) complex.

The metal ions Zn(2+), Co(2+), and La(3+) strongly catalyze the methanolysis of the activated amides acetylimidazole (1) and its ligand-exchange-inert Co(III) complex, (NH(3))(5)Co(III)-AcIm (2). Studies of the kinetics of methanolysis are performed with pH measurement and control, and the metal ions are soluble in the medium throughout the pH regions where ionization of the M(x+)(CH(3)OH)(y) occurs. Zn(2+) and Co(2+) act as Lewis acids toward 1, catalyzing attack of external methoxide on a 1:M(2+) complex at values only 100-fold lower than the diffusion limit, the k(OR) values being 5.6 x 10(7) M(-1) s(-1) and 2.5 x 10(7) M(-1) s(-1), while that for CH(3)O(-) attack on 2 is 4.69 x 10(7) M(-1) s(-1). Since neither Zn(2+) nor Co(2+) promotes the methanolysis of 2, these metals appear to be acting through transient binding to the distal N of 1, which activates the C=O of the complex to external CH(3)O(-) attack. La(3+) catalyzes the methanolysis of both 1 and 2, which occurs by a mechanism that is fundamentally different from that exhibited by Zn(2+) and Co(2+) in that the active species appears to be a bis-methoxy-bridged dimer (La(3+))(2)(CH(3)O(-))(2)(CH(3)OH)(x)() that interacts directly with the C=O unit of the substrate.[1]

References

 
WikiGenes - Universities