A Rho-dependent signaling pathway operating through myosin localizes beta-actin mRNA in fibroblasts.
BACKGROUND: The sorting of mRNA is a determinant of cell asymmetry. The cellular signals that direct specific RNA sequences to a particular cellular compartment are unknown. In fibroblasts, beta-actin mRNA has been shown to be localized toward the leading edge, where it plays a role in cell motility and asymmetry. RESULTS: We demonstrate that a signaling pathway initiated by extracellular receptors acting through Rho GTPase and Rho-kinase regulates this spatial aspect of gene expression in fibroblasts by localizing beta-actin mRNA via actomyosin interactions. Consistent with the role of Rho as an activator of myosin, we found that inhibition of myosin ATPase, myosin light chain kinase (MLCK), and the knockout of myosin II-B in mouse embryonic fibroblasts all inhibited beta-actin mRNA from localizing in response to growth factors. CONCLUSIONS: We therefore conclude that the sorting of beta-actin mRNA in fibroblasts requires a Rho mediated pathway operating through a myosin II-B-dependent step and postulate that polarized actin bundles direct the mRNA to the leading edge of the cell.[1]References
- A Rho-dependent signaling pathway operating through myosin localizes beta-actin mRNA in fibroblasts. Latham, V.M., Yu, E.H., Tullio, A.N., Adelstein, R.S., Singer, R.H. Curr. Biol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg