The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A model of reversible inhibitors in the gastric H+/K+-ATPase binding site determined by rotational echo double resonance NMR.

Several close analogues of the noncovalent H(+)/K(+)-ATPase inhibitor SCH28080 (2-methyl-3-cyanomethyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine) have been screened for activity and examined in the pharmacological site of action by solid-state NMR spectroscopy. TMPIP, the 1,2,3-trimethyl analogue of SCH28080, and variants of TMPIP containing fluorine in the phenylmethoxy ring exhibited IC(50) values for porcine H(+)/K(+)-ATPase inhibition falling in the sub-10 microm range. Deuterium NMR spectra of a (2)H-labeled inhibitor titrated into H(+)/K(+)-ATPase membranes revealed that 80-100% of inhibitor was bound to the protein, and K(+)-competition (2)H NMR experiments confirmed that the inhibitor lay within the active site. The active binding conformation of the pentafluorophenylmethoxy analogue of TMPIP was determined from (13)C-(19)F dipolar coupling measurements using the cross-polarization magic angle spinning NMR method, REDOR. It was found that the inhibitor adopts an energetically favorable extended conformation falling between fully planar and partially bowed extremes. These findings allowed a model to be proposed for the binding of this inhibitor to H(+)/K(+)-ATPase based on the results of independent site-directed mutagenesis studies. In the model, the partially bowed inhibitor interacts with Phe(126) close to the N-terminal membrane spanning helix M1 and residues in the extracellular loop bridging membrane helices M5 and M6 and is flanked by residues in M4.[1]

References

 
WikiGenes - Universities