The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of Na+/Ca2+ exchange with KB-R7943 or bepridil diminished mineral deposition by osteoblasts.

Osteoblasts form new bone by secreting a complex extracellular matrix that has the capacity to mineralize when adequate amounts of calcium and phosphate are supplied. The studies reported here show that long-term treatment of cultured, primary osteoblasts with Na+/Ca2+ exchanger (NCX) inhibitors, bepridil and KB-R7943, impacts in a dose-dependent manner the ability of the cells to form a calcified matrix. Treatment of confluent osteoblast cultures for 14 days with low levels of bepridil (3.0 microM) or KB-R7943 (1.0 microM and 0.1 microM) resulted in a significantly diminished capacity of these cells to mineralize bone matrix, without significantly altering cell morphology, viability, or cell differentiation. The data indicate that inhibition of NCX reduces mineral accumulation in the bone matrix by blocking the efflux of Ca2+ from the osteoblast into the bone fluid. In addition, immunocytochemistry of type I collagen (COLI) and bone sialoprotein ( BSP) suggests that inhibition of NCX by 1.0 microM KB-R7943 also may impair the secretion of bone matrix proteins by the osteoblasts. This study is the first to show that NCX is an important regulator of the bone fluid microenvironment and that NCX appears critical to the mineralization process.[1]

References

 
WikiGenes - Universities