The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bone Matrix

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bone Matrix

 

High impact information on Bone Matrix

  • Additionally, RSK2 and ATF4 posttranscriptionally regulate the synthesis of Type I collagen, the main constituent of the bone matrix [6].
  • Extensive osseous tophi, resorbed rapidly during therapy with this xanthine oxidase inhibitor and not replaced by new bone matrix, were responsible for the deformity [7].
  • Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known [8].
  • Growth factors, including transforming growth factor-beta (TGF-beta), released from bone matrix by the action of osteoclasts, may foster metastatic growth [9].
  • We report the same effect in murine antigen-induced arthritis. uPA-mediated plasminogen activation in arthritic joints may have deleterious effects via degradation of cartilage and bone matrix proteins as well as beneficial effects via fibrin degradation [10].
 

Chemical compound and disease context of Bone Matrix

 

Biological context of Bone Matrix

  • Transforming growth factor-beta (TGF-beta), one of the most abundant cytokines in bone matrix, has positive and negative effects on bone formation, although the molecular mechanisms of these effects are not fully understood [16].
  • To define the possible biochemical basis of species specificity, human, monkey, and bovine extracellular bone matrices were extracted with 4 M guanidine X HCl and the extracts were reconstituted with biologically inactive rat residue and bioassayed [17].
  • Since TGF-beta is also present in bone matrix and inhibits formation of multinucleated cells that express an osteoclast phenotype in long-term human marrow cultures, we tested the effects of OIF on formation of these osteoclast-like cells to determine the effects of OIF on cells in the osteoclast lineage [18].
  • Transforming growth factor beta (TGF-beta) enhances replication and bone matrix protein synthesis and associates with distinct binding sites in osteoblast-enriched cultures from fetal rat bone [19].
  • The polyaspartic acid motif of osteopontin, in combination with neighboring sequences that include serine residues phosphorylated by protein kinases, could fold and assemble into a molecular structure that participates in the mineralization of the bone matrix [20].
 

Anatomical context of Bone Matrix

 

Associations of Bone Matrix with chemical compounds

  • Constituents of bone matrix, such as collagen fragments, hydroxyproline, and, to a lesser extent, transforming growth factor-beta, but not osteocalcin, alpha 2HS glycoprotein, fragments of either bone sialoprotein or osteopontin, and fibronectin, stimulated PBMC IL-1 release in a dose-dependent fashion [26].
  • To determine the possible biochemical potential of fine matrix to induce bone, the matrix was extracted in 4 M guanidine HCl and the extract was reconstituted with biologically inactive 4 M guanidine HCl-treated coarse bone matrix residue [27].
  • Osteoblasts mineralize bone matrix by promoting hydroxyapatite crystal formation and growth in the interior of membrane-limited matrix vesicles (MVs) and by propagating the crystals onto the collagenous extracellular matrix [28].
  • Demineralized bovine bone matrix was dissociatively extracted in 4.0 M guanidine hydrochloride and the bone-inductive proteins were purified greater than 12,000-fold [29].
  • A bone morphogenetic protein (BMP) obtained in solution by digestion of demineralized rabbit cortical bone matrix with bacterial collagenase retains its biologically active conformation in a neutral salt/ethylene glycol mixture [30].
 

Gene context of Bone Matrix

  • The expression of the bone matrix protein osteopontin remained unchanged [31].
  • Thus, a reduction in TGF-beta signaling, through its effector Smad3, enhanced the mechanical properties and mineral concentration of the bone matrix, as well as the bone mass, enabling the bone to better resist fracture [21].
  • The expression domain of ptc1 is broader than that of shh and adjacent blastemal cells releasing the dermal bone matrix also express ptc1 [32].
  • In an effort to clarify the regulation of distribution and actions of transforming growth factor (TGF)-beta in bone, TGF-beta 1 binding to extracted bone matrix proteins and the influence of such binding on TGF-beta 1 actions were examined [33].
  • Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization [34].
 

Analytical, diagnostic and therapeutic context of Bone Matrix

References

  1. Bone sialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone. van der Pluijm, G., Vloedgraven, H.J., Ivanov, B., Robey, F.A., Grzesik, W.J., Robey, P.G., Papapoulos, S.E., Lowik, C.W. Cancer Res. (1996) [Pubmed]
  2. Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Koblinski, J.E., Kaplan-Singer, B.R., VanOsdol, S.J., Wu, M., Engbring, J.A., Wang, S., Goldsmith, C.M., Piper, J.T., Vostal, J.G., Harms, J.F., Welch, D.R., Kleinman, H.K. Cancer Res. (2005) [Pubmed]
  3. Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. Craig, A.M., Smith, J.H., Denhardt, D.T. J. Biol. Chem. (1989) [Pubmed]
  4. Increased proliferation of osteoblastic cells expressing the activating Gs alpha mutation in monostotic and polyostotic fibrous dysplasia. Marie, P.J., de Pollak, C., Chanson, P., Lomri, A. Am. J. Pathol. (1997) [Pubmed]
  5. Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and estrogen efficacy in postmenopausal osteoporosis. Seibel, M.J., Cosman, F., Shen, V., Gordon, S., Dempster, D.W., Ratcliffe, A., Lindsay, R. J. Bone Miner. Res. (1993) [Pubmed]
  6. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H.C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T.M., Hanauer, A., Karsenty, G. Cell (2004) [Pubmed]
  7. Allopurinol-associated hand and foot deformities in chronic tophaceous gout. Gottlieb, N.L., Gray, R.G. JAMA (1977) [Pubmed]
  8. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. Ishijima, M., Rittling, S.R., Yamashita, T., Tsuji, K., Kurosawa, H., Nifuji, A., Denhardt, D.T., Noda, M. J. Exp. Med. (2001) [Pubmed]
  9. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Yin, J.J., Selander, K., Chirgwin, J.M., Dallas, M., Grubbs, B.G., Wieser, R., Massagué, J., Mundy, G.R., Guise, T.A. J. Clin. Invest. (1999) [Pubmed]
  10. Exacerbation of antigen-induced arthritis in urokinase-deficient mice. Busso, N., Péclat, V., Van Ness, K., Kolodziesczyk, E., Degen, J., Bugge, T., So, A. J. Clin. Invest. (1998) [Pubmed]
  11. The vitamin K-dependent bone protein is accumulated within cultured osteosarcoma cells in the presence of the vitamin K antagonist warfarin. Nishimoto, S.K., Price, P.A. J. Biol. Chem. (1985) [Pubmed]
  12. Hypoparathyroidism: a possible cause of osteomalacia . Drezner, M.K., Neelon, F.A., Jowsey, J., Lebovitz, H.E. J. Clin. Endocrinol. Metab. (1977) [Pubmed]
  13. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. Sung, V., Stubbs, J.T., Fisher, L., Aaron, A.D., Thompson, E.W. J. Cell. Physiol. (1998) [Pubmed]
  14. A peptidyl derivative structurally based on the inhibitory center of cystatin C inhibits bone resorption in vitro. Johansson, L., Grubb, A., Abrahamson, M., Kasprzykowski, F., Kasprzykowska, R., Grzonka, Z., Lerner, U.H. Bone (2000) [Pubmed]
  15. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. Beardmore, A.A., Brooks, D.E., Wenke, J.C., Thomas, D.B. The Journal of bone and joint surgery. American volume. (2005) [Pubmed]
  16. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. Maeda, S., Hayashi, M., Komiya, S., Imamura, T., Miyazono, K. EMBO J. (2004) [Pubmed]
  17. Homology of bone-inductive proteins from human, monkey, bovine, and rat extracellular matrix. Sampath, T.K., Reddi, A.H. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  18. Osteoinductive factor inhibits formation of human osteoclast-like cells. Kukita, A., Bonewald, L., Rosen, D., Seyedin, S., Mundy, G.R., Roodman, G.D. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  19. Glucocorticoid regulation of transforming growth factor beta 1 activity and binding in osteoblast-enriched cultures from fetal rat bone. Centrella, M., McCarthy, T.L., Canalis, E. Mol. Cell. Biol. (1991) [Pubmed]
  20. The roles of autophosphorylation and phosphorylation in the life of osteopontin. Saavedra, R.A. Bioessays (1994) [Pubmed]
  21. TGF-beta regulates the mechanical properties and composition of bone matrix. Balooch, G., Balooch, M., Nalla, R.K., Schilling, S., Filvaroff, E.H., Marshall, G.W., Marshall, S.J., Ritchie, R.O., Derynck, R., Alliston, T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Osteoblastic responses to TGF-beta during bone remodeling. Erlebacher, A., Filvaroff, E.H., Ye, J.Q., Derynck, R. Mol. Biol. Cell (1998) [Pubmed]
  23. Bone morphogenetic proteins in craniofacial and periodontal tissue engineering: experimental studies in the non-human primate Papio ursinus. Ripamonti, U., Herbst, N.N., Ramoshebi, L.N. Cytokine Growth Factor Rev. (2005) [Pubmed]
  24. Osteogenesis associated with bone gla protein gene expression in diffusion chambers by bone marrow cells with demineralized bone matrix. Dohi, Y., Ohgushi, H., Tabata, S., Yoshikawa, T., Dohi, K., Moriyama, T. J. Bone Miner. Res. (1992) [Pubmed]
  25. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. Grzesik, W.J., Robey, P.G. J. Bone Miner. Res. (1994) [Pubmed]
  26. Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells. Pacifici, R., Carano, A., Santoro, S.A., Rifas, L., Jeffrey, J.J., Malone, J.D., McCracken, R., Avioli, L.V. J. Clin. Invest. (1991) [Pubmed]
  27. Importance of geometry of the extracellular matrix in endochondral bone differentiation. Sampath, T.K., Reddi, A.H. J. Cell Biol. (1984) [Pubmed]
  28. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Hessle, L., Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W., Terkeltaub, R., Millan, J.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  29. Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Sampath, T.K., Muthukumaran, N., Reddi, A.H. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  30. Solubilized and insolubilized bone morphogenetic protein. Urist, M.R., Mikulski, A., Lietze, A. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  31. Decreased c-Src expression enhances osteoblast differentiation and bone formation. Marzia, M., Sims, N.A., Voit, S., Migliaccio, S., Taranta, A., Bernardini, S., Faraggiana, T., Yoneda, T., Mundy, G.R., Boyce, B.F., Baron, R., Teti, A. J. Cell Biol. (2000) [Pubmed]
  32. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Laforest, L., Brown, C.W., Poleo, G., Géraudie, J., Tada, M., Ekker, M., Akimenko, M.A. Development (1998) [Pubmed]
  33. Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. Takeuchi, Y., Kodama, Y., Matsumoto, T. J. Biol. Chem. (1994) [Pubmed]
  34. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. Zhang, M., Xuan, S., Bouxsein, M.L., von Stechow, D., Akeno, N., Faugere, M.C., Malluche, H., Zhao, G., Rosen, C.J., Efstratiadis, A., Clemens, T.L. J. Biol. Chem. (2002) [Pubmed]
  35. Gene expression of bone matrix proteins and endothelin receptors in endothelin-1-deficient mice revealed by in situ hybridization. Kitano, Y., Kurihara, H., Kurihara, Y., Maemura, K., Ryo, Y., Yazaki, Y., Harii, K. J. Bone Miner. Res. (1998) [Pubmed]
  36. Continuous ambulatory peritoneal dialysis and bone. Delmez, J.A., Fallon, M.D., Bergfeld, M.A., Gearing, B.K., Dougan, C.S., Teitelbaum, S.L. Kidney Int. (1986) [Pubmed]
  37. Osteomalacia in hyp mice is associated with abnormal phex expression and with altered bone matrix protein expression and deposition. Miao, D., Bai, X., Panda, D., McKee, M., Karaplis, A., Goltzman, D. Endocrinology (2001) [Pubmed]
  38. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Nakamura, H., Sato, G., Hirata, A., Yamamoto, T. Bone (2004) [Pubmed]
  39. Silk implants for the healing of critical size bone defects. Meinel, L., Fajardo, R., Hofmann, S., Langer, R., Chen, J., Snyder, B., Vunjak-Novakovic, G., Kaplan, D. Bone (2005) [Pubmed]
 
WikiGenes - Universities