The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A new strategy for modulating chemotherapy-induced alopecia, using PTH/ PTHrP receptor agonist and antagonist.

Parathyroid hormone (PTH) related peptide ( PTHrP) and the PTH/ PTHrP receptor ( PTH/PTHrP-R) show prominent cutaneous expression, where this signaling system may exert important paracrine and/or autocrine functions, such as in hair growth control. Chemotherapy-induced alopecia - one of the fundamental unsolved problems of clinical oncology - is driven in part by defined abnormalities in hair follicle cycling. We have therefore explored the therapeutic potential of a PTH/PTHrP-R agonist and two PTH/PTHrP-R antagonists in a mouse model of cyclophosphamide- induced alopecia. Intraperitoneal administration of the agonist PTH(1-34) or the antagonists PTH(7-34) and PTHrP(7-34) significantly altered the follicular response to cyclophosphamide in vivo. PTH(7-34) and PTHrP(7-34) shifted it towards a mild form of "dystrophic anagen", associated with a significant reduction in apoptotic (TUNEL+) hair bulb cells, thus mitigating the degree of follicle damage and retarding the onset of cyclophosphamide-induced alopecia. PTH(1-34), in contrast, forced hair follicles into "dystrophic catagen", associated with enhanced intrafollicular apoptosis. We had previously shown that an induced shift in the follicular damage-response towards "dystrophic catagen" mitigates cyclophosphamide-induced alopecia, whereas a shift towards "dystrophic catagen" initially enhanced the hair loss, yet subsequently promoted accelerated hair follicle recovery. Therefore, this study in an established animal model of chemotherapy-induced alopecia, which closely mimics human chemotherapy-induced alopecia, strongly encourages the exploration of PTH/PTHrP-R agonists and antagonists as novel therapeutic agents in chemotherapy- induced alopecia.[1]


  1. A new strategy for modulating chemotherapy-induced alopecia, using PTH/PTHrP receptor agonist and antagonist. Peters, E.M., Foitzik, K., Paus, R., Ray, S., Holick, M.F. J. Invest. Dermatol. (2001) [Pubmed]
WikiGenes - Universities