The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila.

The rutabaga and dunce genes, encode two enzymes of the cyclic adenosine monophosphate transduction pathway in Drosophila, adenylyl cyclase and cyclic adenosine monophosphate phosphodiesterase, respectively. Two main second messenger systems, depending on inositol 1,4,5-triphosphate and cyclic adenosine monophosphate, have been associated with olfaction in vertebrates as well as invertebrates. A relationship between the cyclic adenosine monophosphate signaling pathway and olfactory reception in Drosophila is suggested by the presence of cyclic nucleotide gated channels and cyclic-nucleotide modulated K+ channels in the antennae, the main olfactory organs. In this report, molecular, electrophysiological and behavioral data support the role of cyclic adenosine monophosphate in olfactory function for this species. Expression of both genes in the antennae has been shown by messenger ribonucleic acid analysis. Changes in the electroantennogram kinetics have been observed specifically on the slope of the initial rising phase, as predicted for processes that affect cyclic adenosine monophosphate concentration. Olfactory behavior changes due to both mutations were coherent with a functional meaning of the reported electrophysiological phenotype in olfactory perception. Sensitivity level increases or decreases for the mutants compared to the control line depending on the odorant. These results are compatible with some olfactory coding at the reception level by differential activation of a dual transduction system involving the inositol 1,4,5-triphosphate and cyclic adenosine monophosphate cascades.[1]


  1. Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila. Martín, F., Charro, M.J., Alcorta, E. J. Comp. Physiol. A (2001) [Pubmed]
WikiGenes - Universities