The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regioselective and stereospecific glucuronidation of trans- and cis-resveratrol in human.

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenol present in wine, which has been reported to have anti-inflammatory, anti-platelet, and anti-carcinogenic effects. The glucuronidation of this compound and that of the cis-isomer also naturally present, has been investigated in human liver microsomes. Both isomers were actively glucuronidated. The reaction led to the formation of two glucuronides (3-O- and 4'-O-glucuronides), whose structure was characterized by LC-MS and proton NMR. Glucuronidation was regio- and stereoselective. It occurred at a faster rate with the cis-isomer and preferred the 3-position on both isomers. In addition, the glucuronidation of resveratrol was tested using several recombinant UDP-glucuronosyltransferase ( UGT) isoforms. The reaction was catalyzed by UGT of the family 1A (UGT1A1, 1A6, 1A7, 1A9, 1A10). The bilirubin conjugating UGT1A1 was mainly involved in the 3-O-glucuronidation of trans-resveratrol, whereas the phenol conjugating UGT1A6 activity was restricted to cis-resveratrol. The UGT1A9 and 1A10 were active toward both isomers. The activity supported by UGT2B7 and UGT2B15 was very low and restricted to cis-resveratrol. UGT1A3, 1A4, 2B4, and 2B11 were unable to form resveratrol glucuronides.[1]

References

  1. Regioselective and stereospecific glucuronidation of trans- and cis-resveratrol in human. Aumont, V., Krisa, S., Battaglia, E., Netter, P., Richard, T., Mérillon, J.M., Magdalou, J., Sabolovic, N. Arch. Biochem. Biophys. (2001) [Pubmed]
 
WikiGenes - Universities