The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of biogenic H(2)S production with nitrite and molybdate.

The effects of the metabolic inhibitors, sodium nitrite and ammonium molybdate, on production of H(2)S by a pure culture of the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6 and a consortium of SRB, enriched from produced water of a Canadian oil field, were investigated. Addition of 0.1 mM nitrite or 0.024 mM molybdate at the start of growth prevented the production of H(2)S by strain Lac6. With exponentially growing cultures, higher levels of inhibitors, 0.25 mM nitrite or 0.095 mM molybdate, were required to suppress the production of H(2)S. Simultaneous addition of nitrite and molybdate had a synergistic effect: at time 0, 0.05 mM nitrite and 0.01 mM molybdate, whereas during the exponential phase, 0.1 mM nitrite and 0.047 mM molybdate were sufficient to stop H(2)S production. With an exponentially growing consortium of SRB, enriched from produced water of the Coleville oil field, much higher levels of inhibitors, 4 mM nitrite or 0.47 mM molybdate, were needed to stop the production of H(2)S. The addition of these inhibitors had no effect on the composition of the microbial community, as shown by reverse sample genome probing. The results indicate that the efficiency of inhibitors in containment of SRB depends on the composition and metabolic state of the microbial community.[1]

References

  1. Control of biogenic H(2)S production with nitrite and molybdate. Nemati, M., Mazutinec, T.J., Jenneman, G.E., Voordouw, G. J. Ind. Microbiol. Biotechnol. (2001) [Pubmed]
 
WikiGenes - Universities