The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Desulfovibrio


High impact information on Desulfovibrio

  • The 1.87 A-resolution structure of the radical form of PFOR from Desulfovibrio africanus shows that, despite currently accepted ideas, the thiazole ring of the ThDP cofactor is markedly bent, indicating a drastic reduction of its aromaticity [6].
  • The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined [7].
  • In Desulfovibrio gigas, a cytoplasmic rubredoxin oxidase was identified as an oxygen-reducing terminal oxidase [8].
  • Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio [9].
  • The possible role of the [Fe(SCys)(4)] site in 2Fe-SORs was addressed in this work by examination of an engineered Desulfovibrio vulgaris 2Fe-SOR variant, C13S, in which one ligand residue of the [Fe(SCys)(4)] site, cysteine 13, was changed to serine [10].

Chemical compound and disease context of Desulfovibrio

  • Culture of Desulfovibrio vulgaris in a medium supplemented with 5-aminolevulinic acid and L-methionine-methyl-d3 resulted in the formation of porphyrins (sirohydrochlorin, coproporphyrin III, and protoporphyrin IX) in which the methyl groups at the C-2 and C-7 positions were deuterated [11].
  • Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue [12].
  • Here, we report the crystal structures of the homodimeric Desulfovibrio africanus PFOR (data to 2.3 A resolution), and of its complex with pyruvate (3.0 A resolution) [13].
  • Ni and Se x-ray absorption spectroscopic studies of the [NiFeSe]hydrogenases from Desulfovibrio baculatus are described [14].
  • The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution [15].

Biological context of Desulfovibrio


Anatomical context of Desulfovibrio


Gene context of Desulfovibrio


Analytical, diagnostic and therapeutic context of Desulfovibrio


  1. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. Fauque, G., Peck, H.D., Moura, J.J., Huynh, B.H., Berlier, Y., DerVartanian, D.V., Teixeira, M., Przybyla, A.E., Lespinat, P.A., Moura, I. FEMS Microbiol. Rev. (1988) [Pubmed]
  2. Core dimensions in the 3Fe cluster of Desulfovibrio gigas ferredoxin II by extended X-ray absorption fine structure spectroscopy. Antonio, M.R., Averill, B.A., Moura, I., Moura, J.J., Orme-Johnson, W.H., Teo, B.K., Xavier, A.V. J. Biol. Chem. (1982) [Pubmed]
  3. Contribution of the [FeII(SCys)4] site to the thermostability of rubredoxins. Bonomi, F., Eidsness, M.K., Iametti, S., Kurtz, D.M., Mazzini, S., Morleo, A. J. Biol. Inorg. Chem. (2004) [Pubmed]
  4. Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Drzyzga, O., Gottschal, J.C. Appl. Environ. Microbiol. (2002) [Pubmed]
  5. Electron transport components of the parasitic protozoon Giardia lamblia. Ellis, J.E., Williams, R., Cole, D., Cammack, R., Lloyd, D. FEBS Lett. (1993) [Pubmed]
  6. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Chabrière, E., Vernède, X., Guigliarelli, B., Charon, M.H., Hatchikian, E.C., Fontecilla-Camps, J.C. Science (2001) [Pubmed]
  7. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Romão, M.J., Archer, M., Moura, I., Moura, J.J., LeGall, J., Engh, R., Schneider, M., Hof, P., Huber, R. Science (1995) [Pubmed]
  8. Oxygen respiration by desulfovibrio species. Cypionka, H. Annu. Rev. Microbiol. (2000) [Pubmed]
  9. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Odom, J.M., Peck, H.D. Annu. Rev. Microbiol. (1984) [Pubmed]
  10. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo. Emerson, J.P., Cabelli, D.E., Kurtz, D.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  11. A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. Ishida, T., Yu, L., Akutsu, H., Ozawa, K., Kawanishi, S., Seto, A., Inubushi, T., Sano, S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  12. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Rousset, M., Montet, Y., Guigliarelli, B., Forget, N., Asso, M., Bertrand, P., Fontecilla-Camps, J.C., Hatchikian, E.C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  13. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Chabrière, E., Charon, M.H., Volbeda, A., Pieulle, L., Hatchikian, E.C., Fontecilla-Camps, J.C. Nat. Struct. Biol. (1999) [Pubmed]
  14. Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus. Eidsness, M.K., Scott, R.A., Prickril, B.C., DerVartanian, D.V., Legall, J., Moura, I., Moura, J.J., Peck, H.D. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  15. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Huber, R., Hof, P., Duarte, R.O., Moura, J.J., Moura, I., Liu, M.Y., LeGall, J., Hille, R., Archer, M., Romão, M.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Amino acid sequence of the [4Fe-4S] ferredoxin isolated from Desulfovibrio desulfuricans Norway. Bruschi, M.H., Guerlesquin, F.A., Bovier-Lapierre, G.E., Bonicel, J.J., Couchoud, P.M. J. Biol. Chem. (1985) [Pubmed]
  17. Redox properties of cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Costa, C., Moura, J.J., Moura, I., Wang, Y., Huynh, B.H. J. Biol. Chem. (1996) [Pubmed]
  18. Cloning, nucleotide sequence, and expression of the flavodoxin gene from Desulfovibrio vulgaris (Hildenborough). Krey, G.D., Vanin, E.F., Swenson, R.P. J. Biol. Chem. (1988) [Pubmed]
  19. Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). Cunha, C.A., Macieira, S., Dias, J.M., Almeida, G., Goncalves, L.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J., Moura, I., Romão, M.J. J. Biol. Chem. (2003) [Pubmed]
  20. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. Gomes, C.M., Silva, G., Oliveira, S., LeGall, J., Liu, M.Y., Xavier, A.V., Rodrigues-Pousada, C., Teixeira, M. J. Biol. Chem. (1997) [Pubmed]
  21. Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. Odom, J.M., Peck, H.D. J. Bacteriol. (1981) [Pubmed]
  22. Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. Klemm, D.J., Barton, L.L. J. Bacteriol. (1987) [Pubmed]
  23. The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties. Almeida, M.G., Macieira, S., Gonçalves, L.L., Huber, R., Cunha, C.A., Romão, M.J., Costa, C., Lampreia, J., Moura, J.J., Moura, I. Eur. J. Biochem. (2003) [Pubmed]
  24. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Willis, C.L., Cummings, J.H., Neale, G., Gibson, G.R. Curr. Microbiol. (1997) [Pubmed]
  25. Biological activity of Desulfovibrio desulfuricans lipopolysaccharides evaluated via interleukin-8 secretion by Caco-2 cells. Weglarz, L., Dzierzewicz, Z., Orchel, A., Szczerba, J., Jaworska-Kik, M., Wilczok, T. Scand. J. Gastroenterol. (2003) [Pubmed]
  26. A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). Lumppio, H.L., Shenvi, N.V., Garg, R.P., Summers, A.O., Kurtz, D.M. J. Bacteriol. (1997) [Pubmed]
  27. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins. Iyer, R.B., Silaghi-Dumitrescu, R., Kurtz, D.M., Lanzilotta, W.N. J. Biol. Inorg. Chem. (2005) [Pubmed]
  28. Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. Moura, I., Tavares, P., Moura, J.J., Ravi, N., Huynh, B.H., Liu, M.Y., LeGall, J. J. Biol. Chem. (1990) [Pubmed]
  29. Solution structure of Desulfovibrio vulgaris (Hildenborough) ferrocytochrome c3: structural basis for functional cooperativity. Messias, A.C., Kastrau, D.H., Costa, H.S., LeGall, J., Turner, D.L., Santos, H., Xavier, A.V. J. Mol. Biol. (1998) [Pubmed]
  30. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. deMaré, F., Kurtz, D.M., Nordlund, P. Nat. Struct. Biol. (1996) [Pubmed]
  31. Crystallization and preliminary crystallographic study of an octa-heme cytochrome c3 from Desulfovibrio desulfuricans Norway. Czjzek, M., Guerlesquin, F., Roig, V., Payan, F., Bruschi, M., Haser, R. J. Mol. Biol. (1992) [Pubmed]
  32. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants. O'Farrell, P.A., Walsh, M.A., McCarthy, A.A., Higgins, T.M., Voordouw, G., Mayhew, S.G. Biochemistry (1998) [Pubmed]
  33. Potentiometric and voltammetric investigations of H2/H+ catalysis by periplasmic hydrogenase from Desulfovibrio gigas immobilized at the electrode surface in an amphiphilic bilayer assembly. Parpaleix, T., Laval, J.M., Majda, M., Bourdillon, C. Anal. Chem. (1992) [Pubmed]
  34. Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. Strain MB in an aerated sulfate-depleted chemostat. Sigalevich, P., Cohen, Y. Appl. Environ. Microbiol. (2000) [Pubmed]
WikiGenes - Universities