A novel mechanism for localizing membrane proteins to yeast trans-Golgi network requires function of synaptojanin-like protein.
Localization of resident membrane proteins to the yeast trans-Golgi network (TGN) involves both their retrieval from a prevacuolar/endosomal compartment (PVC) and a "slow delivery" mechanism that inhibits their TGN-to-PVC transport. A screen for genes required for the slow delivery mechanism uncovered INP53, a gene encoding a phosphoinositide phosphatase. A retrieval-defective model TGN protein, A(F-->A)-ALP, was transported to the vacuole in inp53 mutants approximately threefold faster than in wild type. Inp53p appears to function in a process distinct from PVC retrieval because combining inp53 with mutations that block retrieval resulted in a much stronger phenotype than either mutation alone. In vps27 strains defective for both anterograde and retrograde transport out of the PVC, a loss of Inp53p function markedly accelerated the rate of transport of TGN residents A-ALP and Kex2p into the PVC. Inp53p function is cargo specific because a loss of Inp53p function had no effect on the rate of Vps10p transport to the PVC in vps27 cells. The rate of early secretory pathway transport appeared to be unaffected in inp53 mutants. Cell fractionation experiments suggested that Inp53p associates with Golgi or endosomal membranes. Taken together, these results suggest that a phosphoinositide signaling event regulates TGN-to-PVC transport of select cargo proteins.[1]References
- A novel mechanism for localizing membrane proteins to yeast trans-Golgi network requires function of synaptojanin-like protein. Ha, S.A., Bunch, J.T., Hama, H., DeWald, D.B., Nothwehr, S.F. Mol. Biol. Cell (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg