The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

trans-Golgi Network

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of trans-Golgi Network


Psychiatry related information on trans-Golgi Network


High impact information on trans-Golgi Network


Chemical compound and disease context of trans-Golgi Network


Biological context of trans-Golgi Network


Anatomical context of trans-Golgi Network


Associations of trans-Golgi Network with chemical compounds


Gene context of trans-Golgi Network

  • Recent work has shown that PtdIns(4)P and the small GTPase ARF1 function cooperatively in the recruitment of four-phosphate adaptor proteins (FAPPs) to the trans-Golgi network (TGN) and has implicated FAPPs in formation of the membrane domain and in post-Golgi trafficking [29].
  • In vitro studies showed that ATP7B, located in the trans-Golgi network, traffics to a cytoplasmic vesicular compartment in response to increased copper concentration [22].
  • Furin catalyzes the proteolytic maturation of many proproteins within the trans-Golgi network (TGN)/endosomal system [30].
  • The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network [31].
  • Studies of the yeast trans-Golgi network (TGN)/endosomal SNARE complex, which includes the syntaxin-like SNARE Tlg2p, have suggested that its assembly requires activation by binding of the SM protein Vps45p to the cytoplasmic region of Tlg2p folded into a closed conformation [32].

Analytical, diagnostic and therapeutic context of trans-Golgi Network


  1. A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network. Alconada, A., Bauer, U., Hoflack, B. EMBO J. (1996) [Pubmed]
  2. The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Suchy, S.F., Nussbaum, R.L. Am. J. Hum. Genet. (2002) [Pubmed]
  3. Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and trans Golgi network. Davidson, H.W., Balch, W.E. J. Biol. Chem. (1993) [Pubmed]
  4. Identification of a di-leucine motif within the C terminus domain of the Menkes disease protein that mediates endocytosis from the plasma membrane. Francis, M.J., Jones, E.E., Levy, E.R., Martin, R.L., Ponnambalam, S., Monaco, A.P. J. Cell. Sci. (1999) [Pubmed]
  5. Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. Turcotte, S., Letellier, J., Lippé, R. J. Virol. (2005) [Pubmed]
  6. Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer's disease brain. Huse, J.T., Liu, K., Pijak, D.S., Carlin, D., Lee, V.M., Doms, R.W. J. Biol. Chem. (2002) [Pubmed]
  7. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Liljedahl, M., Maeda, Y., Colanzi, A., Ayala, I., Van Lint, J., Malhotra, V. Cell (2001) [Pubmed]
  8. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Puertollano, R., Randazzo, P.A., Presley, J.F., Hartnell, L.M., Bonifacino, J.S. Cell (2001) [Pubmed]
  9. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Blaumueller, C.M., Qi, H., Zagouras, P., Artavanis-Tsakonas, S. Cell (1997) [Pubmed]
  10. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Wood, S.A., Park, J.E., Brown, W.J. Cell (1991) [Pubmed]
  11. Selective recycling of the mannose 6-phosphate/IGF-II receptor to the trans Golgi network in vitro. Goda, Y., Pfeffer, S.R. Cell (1988) [Pubmed]
  12. Ultrastructural localization of the regulatory (RII) subunit of cyclic AMP-dependent protein kinase to subcellular compartments active in endocytosis and recycling of membrane receptors. Griffiths, G., Hollinshead, R., Hemmings, B.A., Nigg, E.A. J. Cell. Sci. (1990) [Pubmed]
  13. Mechanisms of alpha1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. Cordelier, P., Strayer, D.S. Biochim. Biophys. Acta (2003) [Pubmed]
  14. The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Gaidarov, I., Smith, M.E., Domin, J., Keen, J.H. Mol. Cell (2001) [Pubmed]
  15. Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network. Méresse, S., Hoflack, B. J. Cell Biol. (1993) [Pubmed]
  16. The Tlg SNARE complex is required for TGN homotypic fusion. Brickner, J.H., Blanchette, J.M., Sipos, G., Fuller, R.S. J. Cell Biol. (2001) [Pubmed]
  17. Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic. Cockcroft, S. Bioessays (1998) [Pubmed]
  18. Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. Takatsu, H., Katoh, Y., Shiba, Y., Nakayama, K. J. Biol. Chem. (2001) [Pubmed]
  19. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Jones, S.M., Howell, K.E., Henley, J.R., Cao, H., McNiven, M.A. Science (1998) [Pubmed]
  20. The trans-Golgi network: a late secretory sorting station. Traub, L.M., Kornfeld, S. Curr. Opin. Cell Biol. (1997) [Pubmed]
  21. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Matanis, T., Akhmanova, A., Wulf, P., Del Nery, E., Weide, T., Stepanova, T., Galjart, N., Grosveld, F., Goud, B., De Zeeuw, C.I., Barnekow, A., Hoogenraad, C.C. Nat. Cell Biol. (2002) [Pubmed]
  22. Defective cellular localization of mutant ATP7B in Wilson's disease patients and hepatoma cell lines. Huster, D., Hoppert, M., Lutsenko, S., Zinke, J., Lehmann, C., Mössner, J., Berr, F., Caca, K. Gastroenterology (2003) [Pubmed]
  23. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. Chen, Y.G., Siddhanta, A., Austin, C.D., Hammond, S.M., Sung, T.C., Frohman, M.A., Morris, A.J., Shields, D. J. Cell Biol. (1997) [Pubmed]
  24. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Puertollano, R., Aguilar, R.C., Gorshkova, I., Crouch, R.J., Bonifacino, J.S. Science (2001) [Pubmed]
  25. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Röper, K., Corbeil, D., Huttner, W.B. Nat. Cell Biol. (2000) [Pubmed]
  26. TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain. Bos, K., Wraight, C., Stanley, K.K. EMBO J. (1993) [Pubmed]
  27. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. Ponnambalam, S., Rabouille, C., Luzio, J.P., Nilsson, T., Warren, G. J. Cell Biol. (1994) [Pubmed]
  28. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. Moore, P.J., Swords, K.M., Lynch, M.A., Staehelin, L.A. J. Cell Biol. (1991) [Pubmed]
  29. Dual control of membrane targeting by PtdIns(4)P and ARF. Shin, H.W., Nakayama, K. Trends Biochem. Sci. (2004) [Pubmed]
  30. Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. Liu, G., Thomas, L., Warren, R.A., Enns, C.A., Cunningham, C.C., Hartwig, J.H., Thomas, G. J. Cell Biol. (1997) [Pubmed]
  31. The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network. Poon, P.P., Nothwehr, S.F., Singer, R.A., Johnston, G.C. J. Cell Biol. (2001) [Pubmed]
  32. How Tlg2p/syntaxin 16 'snares' Vps45. Dulubova, I., Yamaguchi, T., Gao, Y., Min, S.W., Huryeva, I., Südhof, T.C., Rizo, J. EMBO J. (2002) [Pubmed]
  33. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. Barbero, P., Bittova, L., Pfeffer, S.R. J. Cell Biol. (2002) [Pubmed]
  34. Monensin and brefeldin A differentially affect the phosphorylation and sulfation of secretory proteins. Rosa, P., Mantovani, S., Rosboch, R., Huttner, W.B. J. Biol. Chem. (1992) [Pubmed]
  35. The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Zheng, H., von Mollard, G.F., Kovaleva, V., Stevens, T.H., Raikhel, N.V. Mol. Biol. Cell (1999) [Pubmed]
  36. The AMF-R tubule is a smooth ilimaquinone-sensitive subdomain of the endoplasmic reticulum. Wang, H.J., Benlimame, N., Nabi, I. J. Cell. Sci. (1997) [Pubmed]
  37. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. van Ooij, C., Apodaca, G., Engel, J. Infect. Immun. (1997) [Pubmed]
WikiGenes - Universities