The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo.

Activated Notch-Delta signalling was shown to inhibit myogenesis, but whether and how it regulates myogenic gene expression is not clear. We analyzed the implication of Xenopus hairy-1 (Xhairy-1), a member of the hairy and enhancer-of-split (E(spl)) family that may function as nuclear effector of Notch signalling pathway, in regulating XMyoD gene expression at the initial step of myogenesis. Xhairy-1 transcripts are expressed soon after mid-blastula transition and exhibits overlapping expression with Notch pathway genes such as Delta-1 in the posterior somitic mesoderm. We show that overexpression of Xhairy-1 blocks the expression of XMyoD in early gastrula ectodermal cells treated with the mesoderm-inducing factor activin, and in the mesoderm tissues of early embryos. It inhibits myogenesis and produces trunk defects at later stages. Xhairy-1 also inhibits the expression of the pan-mesodermal marker Xbra, but expression of other early mesoderm markers such as goosecoid and chordin is not affected. These effects require the basic helix-loop-helix (bHLH) domain, as well as a synergy between the central Orange domain and the C-terminus WRPW-Groucho-interacting domain. Furthermore, overexpression in ectodermal cells of Xhairy-1/VP16, in which Xhairy-1 repressor domain is replaced by the activator domain of the viral protein VP16, induces the expression of XMyoD in the absence of protein synthesis. Interestingly, Xhairy-1/VP16 does not induce the expression of Xbra and XMyf5 in the same condition. During neurulation, the expression of XMyoD induced by Xhairy-1/VP16 declines and the expression of muscle actin gene was never detected. These results suggest that Notch signalling through hairy-related genes may specifically regulate XMyoD expression at the initial step of myogenesis in vertebrates.[1]

References

  1. Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo. Umbhauer, M., Boucaut, J.C., Shi, D.L. Mech. Dev. (2001) [Pubmed]
 
WikiGenes - Universities