The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Muscle Development

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Muscle Development


Psychiatry related information on Muscle Development

  • This mechanism of active transcriptional repression distinguishes ZEB from other negative regulators of myogenesis (Id, Twist and I-mfa) that inhibit muscle differentiation by simply binding and inactivating myogenic factors [6].
  • These data have established that IGFBP-3 has the potential to affect proliferation of PEMCs during critical periods of muscle development that may impact ultimate muscle mass achievable postnatally [7].

High impact information on Muscle Development

  • In a genetic screen for regulators of muscle development in Drosophila, we discovered a gene encoding a guanine nucleotide exchange factor, called loner, which is required for myoblast fusion [8].
  • 5. HOP does not bind DNA and acts as an antagonist of serum response factor (SRF), which regulates the opposing processes of proliferation and myogenesis [9].
  • MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types [10].
  • The role of these genes in the patterning of limb muscles is unknown, although mutation of Pax3 or Met causes disruption of limb muscle development at an initial step, disturbing the epithelial-to-mesenchymal transition of the somitic epithelium [11].
  • Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour [12].

Chemical compound and disease context of Muscle Development


Biological context of Muscle Development


Anatomical context of Muscle Development


Associations of Muscle Development with chemical compounds


Gene context of Muscle Development


Analytical, diagnostic and therapeutic context of Muscle Development


  1. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Tapscott, S.J., Thayer, M.J., Weintraub, H. Science (1993) [Pubmed]
  2. Cellular aggregation enhances MyoD-directed skeletal myogenesis in embryonal carcinoma cells. Skerjanc, I.S., Slack, R.S., McBurney, M.W. Mol. Cell. Biol. (1994) [Pubmed]
  3. Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Calvo, S., Vullhorst, D., Venepally, P., Cheng, J., Karavanova, I., Buonanno, A. Mol. Cell. Biol. (2001) [Pubmed]
  4. Regulation of myogenesis by fibroblast growth factors requires beta-gamma subunits of pertussis toxin-sensitive G proteins. Fedorov, Y.V., Jones, N.C., Olwin, B.B. Mol. Cell. Biol. (1998) [Pubmed]
  5. Inhibition of myogenesis in transgenic mice expressing the human DMPK 3'-UTR. Storbeck, C.J., Drmanic, S., Daniel, K., Waring, J.D., Jirik, F.R., Parry, D.J., Ahmed, N., Sabourin, L.A., Ikeda, J.E., Korneluk, R.G. Hum. Mol. Genet. (2004) [Pubmed]
  6. ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation. Postigo, A.A., Dean, D.C. EMBO J. (1997) [Pubmed]
  7. Effect of recombinant porcine IGF-binding protein-3 on proliferation of embryonic porcine myogenic cell cultures in the presence and absence of IGF-I. Pampusch, M.S., Kamanga-Sollo, E., White, M.E., Hathaway, M.R., Dayton, W.R. J. Endocrinol. (2003) [Pubmed]
  8. Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Chen, E.H., Pryce, B.A., Tzeng, J.A., Gonzalez, G.A., Olson, E.N. Cell (2003) [Pubmed]
  9. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Shin, C.H., Liu, Z.P., Passier, R., Zhang, C.L., Wang, D.Z., Harris, T.M., Yamagishi, H., Richardson, J.A., Childs, G., Olson, E.N. Cell (2002) [Pubmed]
  10. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. de la Serna, I.L., Carlson, K.A., Imbalzano, A.N. Nat. Genet. (2001) [Pubmed]
  11. Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Schäfer, K., Braun, T. Nat. Genet. (1999) [Pubmed]
  12. Loss of WT1 function leads to ectopic myogenesis in Wilms' tumour. Miyagawa, K., Kent, J., Moore, A., Charlieu, J.P., Little, M.H., Williamson, K.A., Kelsey, A., Brown, K.W., Hassam, S., Briner, J., Hayashi, Y., Hirai, H., Yazaki, Y., van Heyningen, V., Hastie, N.D. Nat. Genet. (1998) [Pubmed]
  13. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. Kaliman, P., Viñals, F., Testar, X., Palacín, M., Zorzano, A. J. Biol. Chem. (1996) [Pubmed]
  14. Immunoassay of muscle-specific creatine kinase with a monoclonal antibody and application to myogenesis and muscular dystrophy. Morris, G.E., Head, L.P. Biochem. J. (1983) [Pubmed]
  15. Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia: confirmation in 2 kindreds. Chen, D.H., Matsushita, M., Rainier, S., Meaney, B., Tisch, L., Feleke, A., Wolff, J., Lipe, H., Fink, J., Bird, T.D., Raskind, W.H. Arch. Neurol. (2005) [Pubmed]
  16. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Vincent, J.B. Sports medicine (Auckland, N.Z.) (2003) [Pubmed]
  17. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Chen, C.M., Kraut, N., Groudine, M., Weintraub, H. Cell (1996) [Pubmed]
  18. Developmental progression of myosin gene expression in cultured muscle cells. Silberstein, L., Webster, S.G., Travis, M., Blau, H.M. Cell (1986) [Pubmed]
  19. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Pownall, M.E., Gustafsson, M.K., Emerson, C.P. Annu. Rev. Cell Dev. Biol. (2002) [Pubmed]
  20. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Tohtong, R., Yamashita, H., Graham, M., Haeberle, J., Simcox, A., Maughan, D. Nature (1995) [Pubmed]
  21. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Zhang, P., Wong, C., Liu, D., Finegold, M., Harper, J.W., Elledge, S.J. Genes Dev. (1999) [Pubmed]
  22. Identification and characterization of multiple forms of actin. Garrels, J.I., Gibson, W. Cell (1976) [Pubmed]
  23. Creatine kinase, myokinase, and acetylcholinesterase activities in muscle-forming primary cultures of mouse teratocarcinoma cells. Gearhart, J.D., Mintz, B. Cell (1975) [Pubmed]
  24. Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5. Braun, T., Winter, B., Bober, E., Arnold, H.H. Nature (1990) [Pubmed]
  25. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Zhang, W., Behringer, R.R., Olson, E.N. Genes Dev. (1995) [Pubmed]
  26. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Michelson, A.M., Abmayr, S.M., Bate, M., Arias, A.M., Maniatis, T. Genes Dev. (1990) [Pubmed]
  27. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Mayer, U., Saher, G., Fässler, R., Bornemann, A., Echtermeyer, F., von der Mark, H., Miosge, N., Pöschl, E., von der Mark, K. Nat. Genet. (1997) [Pubmed]
  28. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P.M., Klein, R., Ponzetto, C. Cell (1996) [Pubmed]
  29. Myogenesis in primary cell cultures from Drosophila melanogaster: protein synthesis and actin heterogeneity during development. Storti, R.V., Horovitch, S.J., Scott, M.P., Rich, A., Pardue, M.L. Cell (1978) [Pubmed]
  30. Manipulation of myogenesis in vitro: reversible inhibition by DMSO. Blau, H.M., Epstein, C.J. Cell (1979) [Pubmed]
  31. 5-bromo-2'-deoxyuridine blocks myogenesis by extinguishing expression of MyoD1. Tapscott, S.J., Lassar, A.B., Davis, R.L., Weintraub, H. Science (1989) [Pubmed]
  32. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Arber, S., Halder, G., Caroni, P. Cell (1994) [Pubmed]
  33. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Tajbakhsh, S., Rocancourt, D., Cossu, G., Buckingham, M. Cell (1997) [Pubmed]
  34. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., Klein, W.H. Nature (1993) [Pubmed]
  35. High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis. Beqaj, S., Jakkaraju, S., Mattingly, R.R., Pan, D., Schuger, L. J. Cell Biol. (2002) [Pubmed]
  36. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Brennan, T.J., Chakraborty, T., Olson, E.N. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  37. zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Postigo, A.A., Ward, E., Skeath, J.B., Dean, D.C. Mol. Cell. Biol. (1999) [Pubmed]
  38. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., Harvey, R.P. Development (1993) [Pubmed]
  39. Mechanism for the reduction of telomerase expression during muscle cell differentiation. Nozawa, K., Maehara, K., Isobe , K. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities