The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct cellular localization and regulation of endothelin-1 and endothelin-converting enzyme-1 expression in the bovine corpus luteum: implications for luteolysis.

Endothelin-1 (ET)-1 within the corpus luteum ( CL) is rapidly up-regulated during natural or PGF(2 alpha)-induced luteolysis; however, such an increase was not observed at early luteal stage, when the CL is refractory to PGF(2 alpha). The mature and active form of ET-1 is derived from the inactive intermediate peptide, big ET-1, by ET-converting enzyme (ECE)-1. This study therefore examined the developmental and cell-specific expression of ECE-1 in bovine CL. A significant, 4-fold, elevation in ECE-1 expression (mRNA and protein levels) occurred during the transition of the CL from early to midluteal phase. Analysis using in-situ hybridization and enriched luteal cell subpopulations showed that both steroidogenic and endothelial cells of the CL expressed high levels of ECE-1 mRNA; prepro ET-1 mRNA, on the other hand, was only expressed by resident endothelial cells. These data suggest that luteal parenchymal and endothelial cells may cooperate in the biosynthesis of mature bioactive ET-1. In the mature CL, ECE-1 mRNA increase occurred both in steroidogenic and endothelial cells and was accompanied by a significant rise in ET-1 peptide. However, in contrast to ECE-1, prepro ET-1 mRNA levels were similar in early and midluteal-phase CL. Low ECE-1 levels during the early luteal phase, restricting the production of active ET-1, may explain why the immature CL is able to withstand PGF(2 alpha)-induced luteolysis.[1]

References

  1. Distinct cellular localization and regulation of endothelin-1 and endothelin-converting enzyme-1 expression in the bovine corpus luteum: implications for luteolysis. Levy, N., Gordin, M., Mamluk, R., Yanagisawa, M., Smith, M.F., Hampton, J.H., Meidan, R. Endocrinology (2001) [Pubmed]
 
WikiGenes - Universities