The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

TMEM176A  -  transmembrane protein 176A

Bos taurus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CL1

  • Based on these findings, we studied MCP-1 expression and macrophage recruitment in human invasive ductal mammary carcinomas in comparison with the physiological angiogenic processes in bovine ovarian corpus luteum [1].
  • Heat stress led to reduced diameter of the corpus luteum and serum progesterone compared with thermoneutral conditions [2].
  • Procedures to rapidly isolate fibroblast growth factor (FGF)-like activity from a number of tissue sources (lung, plasma, brain, ovary, corpus luteum, pituitary, chondrosarcoma) of bovine, porcine or rat origin are described [3].
  • The frequencies of follicular cyst, luteal cyst, and cystic corpus luteum were 65%, 19%, and 16%, respectively [4].
  • For Study 1, cows were considered to have an ovarian cyst if it was possible to observe a single follicular structure with a follicular antrum diameter > 25 min in the absence of a corpus luteum in three ultrasonographic examinations performed at 7 days intervals [5].

Psychiatry related information on CL1


High impact information on CL1

  • The corpus luteum is maintained in a functional state throughout pregnancy (at least in those species described in this review), even though in several species progesterone production by the corpus luteum is not required after the first third of the gestational period [7].
  • It is present in a wide variety of richly vascularized tissues including brain, pituitary, retina, adrenal gland, kidney, corpus luteum, placenta and various tumours [8].
  • Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis [9].
  • Ovarian failure and autoimmunity. Detection of autoantibodies directed against both the unoccupied luteinizing hormone/human chorionic gonadotropin receptor and the hormone-receptor complex of bovine corpus luteum [10].
  • When calculating the relative amounts per organ, the active corpus luteum produces approximately 250 times more oxytocin mRNA than a single hypothalamus [11].

Chemical compound and disease context of CL1


Biological context of CL1


Anatomical context of CL1

  • In this study, we investigated the interaction of F. hepatica excretory/secretory (E/S) products and 2 cysteine proteinases (CL1 and CL2) purified from these products with extracellular matrix and basement membrane macromolecules [19].
  • Luteal cDNA sequence analysis as well as cell-free translation studies showed that the luteal mRNA is essentially similar to that in the hypothalamus, except that in the corpus luteum the poly(A) tail of this mRNA is shorter [11].
  • Extracts from an acetone powder preparation of a culture of a microorganism tentatively named Progenitor cryptocides contain choriogonadotropin (CG)-like factor as determined by radioimmunoassay with antiserum to human (h)CG beta subunit COOH-terminal peptide and radioreceptor assay with bovine corpus luteum membranes [20].
  • In RNA samples obtained from bovine adrenal cortex, from bovine corpus luteum, and from cultured bovine adrenocortical cells, it was found that P-450scc is encoded by mRNA species approximately equal to 2000 bases long, a majority of which are polyadenylylated [21].
  • Sprouting endothelial cells invade the growing CL and continue to grow throughout the first third of the ovarian cycle [22].

Associations of CL1 with chemical compounds

  • Capitalizing on the significant sequence homology comprising the transmembrane motif regions of known prostanoid receptor family, we targeted the cloning of a cDNA clone for prostaglandin (PG) F2 alpha receptor from a bovine corpus luteum cDNA library [23].
  • Purification and characterization of mitochondrial cytochrome P-450 associated with cholesterol side chain cleavage from bovine corpus luteum [24].
  • Upon binding to its G protein-coupled transmembrane receptors, the actions of PGF2alpha on the corpus luteum are initiated by the phospholipase C/diacylglycerol-inositol 1,4,5-trisphosphate (InsP3)/Ca2+-protein kinase C (PKC) pathway [25].
  • Human CG, known to cause follicular development to the preovulatory stage and to enhance luteal estradiol synthesis, also increased levels of the 32K in the corpus luteum, while it concomitantly decreased this protein in the follicle [26].
  • In a preliminary experiment involving six heifers killed during the estrous cycle, a comparison of the ER concentrations of the horns ipsilateral and contralateral to the corpus luteum showed no significant differences, as did a study of the dissociation constant of the steroid-receptor interaction during the estrous cycle and early pregnancy [27].

Physical interactions of CL1


Regulatory relationships of CL1


Other interactions of CL1


Analytical, diagnostic and therapeutic context of CL1


  1. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Goede, V., Brogelli, L., Ziche, M., Augustin, H.G. Int. J. Cancer (1999) [Pubmed]
  2. Interaction of endophyte-infected fescue and heat stress on ovarian function in the beef heifer. Burke, J.M., Spiers, D.E., Kojima, F.N., Perry, G.A., Salfen, B.E., Wood, S.L., Patterson, D.J., Smith, M.F., Lucy, M.C., Jackson, W.G., Piper, E.L. Biol. Reprod. (2001) [Pubmed]
  3. Rapid chromatographic isolation and immunoblot characterization of immunoreactive fibroblast growth factor-related polypeptides from various tissues. Bertolini, J., Guthridge, M., Hearn, M.T. J. Chromatogr. (1989) [Pubmed]
  4. Use of milk progesterone enzyme immunoassay for differential diagnosis of follicular cyst, luteal cyst, and cystic corpus luteum in cows. Nakao, T., Sugihashi, A., Saga, N., Tsunoda, N., Kawata, K. Am. J. Vet. Res. (1983) [Pubmed]
  5. Reproductive performance of dairy cows with ovarian cysts after different GnRH and cloprostenol treatments. López-Gatius, F., López-Béjar, M. Theriogenology (2002) [Pubmed]
  6. Use of a small dose of estradiol benzoate during diestrus to synchronize development of the ovulatory follicle in cattle. Burke, C.R., Day, M.L., Bunt, C.R., Macmillan, K.L. J. Anim. Sci. (2000) [Pubmed]
  7. Uterine luteolytic hormone: a physiological role for prostaglandin F2alpha. Horton, E.W., Poyser, N.L. Physiol. Rev. (1976) [Pubmed]
  8. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J.A., Fiddes, J.C., Gospodarowicz, D. Nature (1987) [Pubmed]
  9. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis. Auletta, F.J., Flint, A.P. Endocr. Rev. (1988) [Pubmed]
  10. Ovarian failure and autoimmunity. Detection of autoantibodies directed against both the unoccupied luteinizing hormone/human chorionic gonadotropin receptor and the hormone-receptor complex of bovine corpus luteum. Moncayo, H., Moncayo, R., Benz, R., Wolf, A., Lauritzen, C. J. Clin. Invest. (1989) [Pubmed]
  11. The gene for the hypothalamic peptide hormone oxytocin is highly expressed in the bovine corpus luteum: biosynthesis, structure and sequence analysis. Ivell, R., Richter, D. EMBO J. (1984) [Pubmed]
  12. The effect of treatment of clinical endometritis on reproductive performance in dairy cows. LeBlanc, S.J., Duffield, T.F., Leslie, K.E., Bateman, K.G., Keefe, G.P., Walton, J.S., Johnson, W.H. J. Dairy Sci. (2002) [Pubmed]
  13. Effects of fenprostalene and estradiol-17 beta benzoate on parturition and retained placenta in dairy cows and heifers. Rasmussen, F.E., Wiltbank, M.C., Christensen, J.O., Grummer, R.R. J. Dairy Sci. (1996) [Pubmed]
  14. Molecular cloning and spatio-temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system. Banu, S.K., Arosh, J.A., Chapdelaine, P., Fortier, M.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  15. Relationship between follicle size at insemination and pregnancy success. Perry, G.A., Smith, M.F., Lucy, M.C., Green, J.A., Parks, T.E., MacNeil, M.D., Roberts, A.J., Geary, T.W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  16. Prostaglandin F2 alpha stimulates phosphatidylinositol 4,5-bisphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells. Davis, J.S., Weakland, L.L., Weiland, D.A., Farese, R.V., West, L.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  17. A role for interferons in early pregnancy. Roberts, R.M. Bioessays (1991) [Pubmed]
  18. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K.H., Augustin, H.G. Cancer Res. (2000) [Pubmed]
  19. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components. Berasaín, P., Goñi, F., McGonigle, S., Dowd, A., Dalton, J.P., Frangione, B., Carmona, C. J. Parasitol. (1997) [Pubmed]
  20. Production of choriogonadotropin-like factor by a microorganism. Maruo, T., Cohen, H., Segal, S.J., Koide, S.S. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  21. Identification and characterization of cDNA clones specific for cholesterol side-chain cleavage cytochrome P-450. John, M.E., John, M.C., Ashley, P., MacDonald, R.J., Simpson, E.R., Waterman, M.R. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  22. Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression. Augustin, H.G., Braun, K., Telemenakis, I., Modlich, U., Kuhn, W. Am. J. Pathol. (1995) [Pubmed]
  23. Molecular cloning and expression of a cDNA of the bovine prostaglandin F2 alpha receptor. Sakamoto, K., Ezashi, T., Miwa, K., Okuda-Ashitaka, E., Houtani, T., Sugimoto, T., Ito, S., Hayaishi, O. J. Biol. Chem. (1994) [Pubmed]
  24. Purification and characterization of mitochondrial cytochrome P-450 associated with cholesterol side chain cleavage from bovine corpus luteum. Kashiwagi, K., Dafeldecker, W.P., Salhanick, H.A. J. Biol. Chem. (1980) [Pubmed]
  25. Prostaglandin F2alpha stimulates the Raf/MEK1/mitogen-activated protein kinase signaling cascade in bovine luteal cells. Chen, D.B., Westfall, S.D., Fong, H.W., Roberson, M.S., Davis, J.S. Endocrinology (1998) [Pubmed]
  26. Hormonal and immunological characterization of the 32 kilodalton ovarian-specific protein. Parmer, T.G., McLean, M.P., Duan, W.R., Nelson, S.E., Albarracin, C.T., Khan, I., Gibori, G. Endocrinology (1992) [Pubmed]
  27. Cytoplasmic estrogen receptors and estrogen concentrations in bovine uterine endometrium. Henricks, D.M., Harris, R.B. Endocrinology (1978) [Pubmed]
  28. Variations in oxytocin, vasopressin and neurophysin concentrations in the bovine ovary during the oestrous cycle and pregnancy. Wathes, D.C., Swann, R.W., Pickering, B.T. J. Reprod. Fertil. (1984) [Pubmed]
  29. Involvement of pro-inflammatory cytokines, mediators of inflammation, and basic fibroblast growth factor in prostaglandin F2alpha-induced luteolysis in bovine corpus luteum. Neuvians, T.P., Schams, D., Berisha, B., Pfaffl, M.W. Biol. Reprod. (2004) [Pubmed]
  30. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells. Nakamura, T., Sakamoto, K. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  31. Cloning of bovine estrogen receptor beta (ERbeta): expression of novel deleted isoforms in reproductive tissues. Walther, N., Lioutas, C., Tillmann, G., Ivell, R. Mol. Cell. Endocrinol. (1999) [Pubmed]
  32. Bovine corpus luteum is an extrapituitary site of prolactin production. Shibaya, M., Murakami, S., Tatsukawa, Y., Skarzynski, D.J., Acosta, T.J., Okuda, K. Mol. Reprod. Dev. (2006) [Pubmed]
  33. Expression of insulin-like growth factor binding protein (IGFBP)-3, and the effects of IGFBP-2 and -3 in the bovine corpus luteum. Brown, T.A., Braden, T.D. Domest. Anim. Endocrinol. (2001) [Pubmed]
  34. Properties of ferredoxin reductase and ferredoxin from the bovine corpus luteum. Tuckey, R.C., Stevenson, P.M. Int. J. Biochem. (1984) [Pubmed]
  35. Distinct cellular localization and regulation of endothelin-1 and endothelin-converting enzyme-1 expression in the bovine corpus luteum: implications for luteolysis. Levy, N., Gordin, M., Mamluk, R., Yanagisawa, M., Smith, M.F., Hampton, J.H., Meidan, R. Endocrinology (2001) [Pubmed]
  36. Assessment of corpus luteum function by direct radioimmunoassay for progesterone in blood spotted on filter paper. Petsos, P., Ratcliffe, W.A., Anderson, D.C. Clin. Chem. (1985) [Pubmed]
  37. Gel-filtration analysis of soluble adenylate cyclase from bovine corpus luteum. Young, J.L., Stansfield, D.A. Biochem. J. (1978) [Pubmed]
  38. Prokineticins (endocrine gland-derived vascular endothelial growth factor and BV8) in the bovine ovary: expression and role as mitogens and survival factors for corpus luteum-derived endothelial cells. Kisliouk, T., Podlovni, H., Spanel-Borowski, K., Ovadia, O., Zhou, Q.Y., Meidan, R. Endocrinology (2005) [Pubmed]
WikiGenes - Universities