The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Luteal Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Luteal Cells


High impact information on Luteal Cells


Chemical compound and disease context of Luteal Cells


Biological context of Luteal Cells


Anatomical context of Luteal Cells


Associations of Luteal Cells with chemical compounds


Gene context of Luteal Cells


Analytical, diagnostic and therapeutic context of Luteal Cells


  1. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells. Liu, J., Kuulasmaa, T., Kosma, V.M., Bützow, R., Vänttinen, T., Hydén-Granskog, C., Voutilainen, R. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  2. Presence of transforming growth factor-beta and their selective cellular localization in human ovarian tissue of various reproductive stages. Chegini, N., Flanders, K.C. Endocrinology (1992) [Pubmed]
  3. Regulation of relaxin release from monodispersed porcine luteal cells: effect of calcium ionophore A23187 and calcium channel blockers. Taylor, M.J., Clark, C.L. Endocrinology (1988) [Pubmed]
  4. Pertussis toxin can distinguish the augmentary effect elicited by epidermal growth factor from that of phorbol ester on luteal adenylate cyclase activity. Budnik, L.T., Mukhopadhyay, A.K. Endocrinology (1993) [Pubmed]
  5. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition. Tong, W., Kiyokawa, H., Soos, T.J., Park, M.S., Soares, V.C., Manova, K., Pollard, J.W., Koff, A. Cell Growth Differ. (1998) [Pubmed]
  6. Mechanisms controlling the function and life span of the corpus luteum. Niswender, G.D., Juengel, J.L., Silva, P.J., Rollyson, M.K., McIntush, E.W. Physiol. Rev. (2000) [Pubmed]
  7. Immunoreactive arginine-vasopressin in Brattleboro rat ovary. Lim, A.T., Lolait, S.J., Barlow, J.W., Autelitano, D.J., Toh, B.H., Boublik, J., Abraham, J., Johnston, C.I., Funder, J.W. Nature (1984) [Pubmed]
  8. Gonadotropin-releasing hormone analogue binds to luteal cells and inhibits progesterone production. Clayton, R.N., Harwood, J.P., Catt, K.J. Nature (1979) [Pubmed]
  9. Failure of parturition in mice lacking the prostaglandin F receptor. Sugimoto, Y., Yamasaki, A., Segi, E., Tsuboi, K., Aze, Y., Nishimura, T., Oida, H., Yoshida, N., Tanaka, T., Katsuyama, M., Hasumoto, K., Murata, T., Hirata, M., Ushikubi, F., Negishi, M., Ichikawa, A., Narumiya, S. Science (1997) [Pubmed]
  10. Endometriosis and polycystic ovary syndrome: enhanced stimulatory effect of peritoneal fluid on progesterone release from human granulosa-lutein cells. Whitehead, S.A., Peattie, A.B., Shakil, T., Suntharalingham, J. Fertil. Steril. (1996) [Pubmed]
  11. Ovarian luteal cell toxicity of ethylene glycol monomethyl ether and methoxy acetic acid in vivo and in vitro. Davis, B.J., Almekinder, J.L., Flagler, N., Travlos, G., Wilson, R., Maronpot, R.R. Toxicol. Appl. Pharmacol. (1997) [Pubmed]
  12. GnRH receptors and GnRH endocrine effects on luteoma cells. Chamson-Reig, A., Lux-Lantos, V., Tesone, M., Libertun, C. Endocrine (1997) [Pubmed]
  13. Toxicity of methoxyacetic acid in cultured human luteal cells. Almekinder, J.L., Lennard, D.E., Walmer, D.K., Davis, B.J. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1997) [Pubmed]
  14. Prostaglandin F2 alpha stimulates phosphatidylinositol 4,5-bisphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells. Davis, J.S., Weakland, L.L., Weiland, D.A., Farese, R.V., West, L.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  15. Regulation of CYP11A (P450SCC) and CYP17 (P450(17) alpha) gene expression in bovine luteal cells in primary culture. Lauber, M.E., Bengtson, T., Waterman, M.R., Simpson, E.R. J. Biol. Chem. (1991) [Pubmed]
  16. Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Somers, J.P., DeLoia, J.A., Zeleznik, A.J. Mol. Endocrinol. (1999) [Pubmed]
  17. Aromatase cytochrome P450 in rat ovarian granulosa cells before and after luteinization: adenosine 3',5'-monophosphate-dependent and independent regulation. Cloning and sequencing of rat aromatase cDNA and 5' genomic DNA. Hickey, G.J., Krasnow, J.S., Beattie, W.G., Richards, J.S. Mol. Endocrinol. (1990) [Pubmed]
  18. Functional and subcellular changes in the A-kinase-signaling pathway: relation to aromatase and Sgk expression during the transition of granulosa cells to luteal cells. Gonzalez-Robayna, I.J., Alliston, T.N., Buse, P., Firestone, G.L., Richards, J.S. Mol. Endocrinol. (1999) [Pubmed]
  19. The corpus luteum of the guinea pig. II. Cytochemical studies on the Golgi complex, GERL, and lysosomes in luteal cells during maximal progesterone secretion. Paavola, L.G. J. Cell Biol. (1978) [Pubmed]
  20. Neuronal microtubule-associated protein 2D is a dual a-kinase anchoring protein expressed in rat ovarian granulosa cells. Salvador, L.M., Flynn, M.P., Avila, J., Reierstad, S., Maizels, E.T., Alam, H., Park, Y., Scott, J.D., Carr, D.W., Hunzicker-Dunn, M. J. Biol. Chem. (2004) [Pubmed]
  21. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. Wulff, C., Wilson, H., Largue, P., Duncan, W.C., Armstrong, D.G., Fraser, H.M. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  22. Ovulation induction with human menopausal gonadotropin compared to human urinary follicle-stimulating hormone results in a significant shift in follicular fluid androgen levels without discernible differences in granulosa-luteal cell function. Polan, M.L., Daniele, A., Russell, J.B., DeCherney, A.H. J. Clin. Endocrinol. Metab. (1986) [Pubmed]
  23. Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. Sugino, N., Kashida, S., Takiguchi, S., Karube, A., Kato, H. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  24. Characterization of the subunit structure of gonadotropin receptor in luteinized rat ovary. Hwang, J., Menon, K.M. J. Biol. Chem. (1984) [Pubmed]
  25. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells. Paciga, M., McCudden, C.R., Londos, C., DiMattia, G.E., Wagner, G.F. J. Biol. Chem. (2003) [Pubmed]
  26. Receptor-mediated gonadotropin action in the ovary. Rat luteal cells preferentially utilize and are acutely dependent upon the plasma lipoprotein-supplied sterols in gonadotropin-stimulated steroid production. Azhar, S., Menon, K.M. J. Biol. Chem. (1981) [Pubmed]
  27. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development. Kamat, B.R., Brown, L.F., Manseau, E.J., Senger, D.R., Dvorak, H.F. Am. J. Pathol. (1995) [Pubmed]
  28. Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Peters, C.A., Maizels, E.T., Robertson, M.C., Shiu, R.P., Soloff, M.S., Hunzicker-Dunn, M. Mol. Endocrinol. (2000) [Pubmed]
  29. Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Liu, Z., Simpson, E.R. Mol. Endocrinol. (1997) [Pubmed]
  30. Interleukin-1-mediated stimulation of prostaglandin E production is without effect on plasminogen activator activity in human granulosa lutein cell cultures. Hurwitz, A., Lavy, Y., Finci-Yeheskel, Z., Milwidsky, A., Shimonovitz, S., Yagel, S., Adashi, E.Y., Laufer, N., Mayer, M. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  31. Adenosine 5'-triphosphate activates nuclear translocation of mitogen-activated protein kinases leading to the induction of early growth response 1 and raf expression in human granulosa-luteal cells. Tai, C.J., Chang, S.J., Leung, P.C., Tzeng, C.R. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  32. Ovarian 11 beta-hydroxysteroid dehydrogenase: potential predictor of conception by in-vitro fertilisation and embryo transfer. Michael, A.E., Gregory, L., Walker, S.M., Antoniw, J.W., Shaw, R.W., Edwards, C.R., Cooke, B.A. Lancet (1993) [Pubmed]
  33. Regulation of prodynorphin gene expression in the ovary: distal DNA regulatory elements confer gonadotropin regulation of promoter activity. Kaynard, A.H., McMurray, C.T., Douglass, J., Curry, T.E., Melner, M.H. Mol. Endocrinol. (1992) [Pubmed]
  34. Acute administration of a 3 beta-hydroxysteroid dehydrogenase inhibitor to rhesus monkeys at the midluteal phase of the menstrual cycle: evidence for possible autocrine regulation of the primate corpus luteum by progesterone. Duffy, D.M., Hess, D.L., Stouffer, R.L. J. Clin. Endocrinol. Metab. (1994) [Pubmed]
  35. Direct action of melatonin in human granulosa-luteal cells. Woo, M.M., Tai, C.J., Kang, S.K., Nathwani, P.S., Pang, S.F., Leung, P.C. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
WikiGenes - Universities