The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes.

The transcription of eukaryotic protein-coding genes involves complex regulation of RNA polymerase (Pol) II activity in response to physiological conditions and developmental cues. One element of this regulation involves phosphorylation of the carboxy-terminal domain (CTD) of the largest polymerase subunit by a transcription elongation factor, P-TEFb, which comprises the kinase CDK9 and cyclin T1 or T2 (ref. 1). Here we report that in human HeLa cells more than half of the P-TEFb is sequestered in larger complexes that also contain 7SK RNA, an abundant, small nuclear RNA (snRNA) of hitherto unknown function. P-TEFb and 7SK associate in a specific and reversible manner. In contrast to the smaller P-TEFb complexes, which have a high kinase activity, the larger 7SK/P-TEFb complexes show very weak kinase activity. Inhibition of cellular transcription by chemical agents or ultraviolet irradiation trigger the complete disruption of the P-TEFb/7SK complex, and enhance CDK9 activity. The transcription-dependent interaction of P-TEFb with 7SK may therefore contribute to an important feedback loop modulating the activity of RNA Pol II.[1]

References

  1. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nguyen, V.T., Kiss, T., Michels, A.A., Bensaude, O. Nature (2001) [Pubmed]
 
WikiGenes - Universities