The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hela Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hela Cells

 

High impact information on Hela Cells

  • The requirement for Dicer in the instability of ARE-containing mRNA (ARE-RNA) was confirmed in HeLa cells [6].
  • In the present work, addition of mTERF to a HeLa cell mitochondrial lysate-based reaction mixture containing an artificial rDNA template did indeed specifically stimulate rDNA transcription [7].
  • Partial in vivo depletion of Nup133 or Nup107 via RNAi in HeLa cells resulted in reduced levels of multiple nucleoporins and decreased NPC density in the NE [8].
  • To uncover the mechanism of inosine-induced retention, HeLa cell nuclear extracts were used to isolate a multiprotein complex that binds specifically and cooperatively to inosine-containing RNAs [9].
  • When a kinase inactive form of Protein Kinase D (PKD-K618N) was expressed in HeLa cells, it localized to the trans-Golgi network (TGN) and caused extensive tubulation [10].
 

Chemical compound and disease context of Hela Cells

 

Biological context of Hela Cells

  • Transfection of hnRNP K and hnRNP E1 into HeLa cells specifically silenced the translation of reporter mRNAs bearing a differentiation control element in their 3' untranslated region [16].
  • When the cloned beta 0 gene is introduced into HeLa cells by use of an SV40-derived plasmid vector, two abnormally spliced cytoplasmic beta-globin RNAs are detected [17].
  • The HeLa cell protein TEF-1 binds specifically and cooperatively to two SV40 enhancer motifs of unrelated sequence [18].
  • Microinjection of anti-cdc25A antibodies into HeLa cells causes their arrest in mitosis. cdc25A and cdc25B display endogenous tyrosine phosphatase activity that is stimulated several-fold, in the absence of cdc2, by stoichiometric addition of either cyclin B1 or B2 but not A or D1 [19].
  • The yeast trans-activator protein GAL4, when expressed in HeLa cells, stimulates transcription from several class B (II) eukaryotic promoters containing GAL4 binding sites either as the full UASG or as synthetic 17-mers [20].
 

Anatomical context of Hela Cells

  • We show here that the N-terminal A/B region of the ER contains an independent constitutive activation function (TAF-1) that exhibits cell type specificity since it activates transcription efficiently in chicken embryo fibroblasts, but only poorly in HeLa cells [21].
  • We now report that in A431 cells, HeLa cells, and rat-1 fibroblasts, the EGF-induced cortical actin polymerization is produced by lipoxygenase metabolism, whereas in these cells stress fiber breakdown is mediated by cyclooxygenase metabolites [22].
  • The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution [23].
  • The fusion of human HeLa cells with tobacco protoplasts has been accomplished with the use of polyethylene glycol [24].
  • The NF-kappaB transcription factor was affinity-purified from deoxycholate (DOC)-treated cytosol of HeLa cells and shown to contain both a 50-kappaD polypeptide (p50) with a DNA-binding specificity identical to that of nuclear NF-kappaB and a 65-kappaD protein (p65) lacking DNA binding activity [25].
 

Associations of Hela Cells with chemical compounds

 

Gene context of Hela Cells

  • Human HeLa cells have mainly the p55 receptor and are not killed by hTNF alone [31].
  • In HeLa cells, Cdi1 is expressed at the G1 to S transition, and the protein forms stable complexes with Cdk2 [32].
  • Using specific antibodies, however, we find here that MBD2 in HeLa cells is associated with histone deacetylase (HDAC) in the MeCP1 repressor complex [33].
  • Our data suggest that HeLa cells, which lack the known methylation-dependent repressor MeCP2, use an alternative pathway involving MBD2 to silence methylated genes [33].
  • A polyclonal antibody raised against the protein was able to 'supershift' the native MeCP11 complex from HeLa cells, indicating that PCM1 is a component of mammalian MeCP1 [34].
 

Analytical, diagnostic and therapeutic context of Hela Cells

References

  1. A small nuclear ribonucleoprotein associates with the AAUAAA polyadenylation signal in vitro. Hashimoto, C., Steitz, J.A. Cell (1986) [Pubmed]
  2. The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Frain, M., Swart, G., Monaci, P., Nicosia, A., Stämpfli, S., Frank, R., Cortese, R. Cell (1989) [Pubmed]
  3. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Krainer, A.R., Maniatis, T., Ruskin, B., Green, M.R. Cell (1984) [Pubmed]
  4. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Dynan, W.S., Sazer, S., Tjian, R., Schimke, R.T. Nature (1986) [Pubmed]
  5. Cell-free, de novo synthesis of poliovirus. Molla, A., Paul, A.V., Wimmer, E. Science (1991) [Pubmed]
  6. Involvement of microRNA in AU-rich element-mediated mRNA instability. Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H., Han, J. Cell (2005) [Pubmed]
  7. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Martin, M., Cho, J., Cesare, A.J., Griffith, J.D., Attardi, G. Cell (2005) [Pubmed]
  8. The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Walther, T.C., Alves, A., Pickersgill, H., Loïodice, I., Hetzer, M., Galy, V., Hülsmann, B.B., Köcher, T., Wilm, M., Allen, T., Mattaj, I.W., Doye, V. Cell (2003) [Pubmed]
  9. The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Zhang, Z., Carmichael, G.G. Cell (2001) [Pubmed]
  10. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Liljedahl, M., Maeda, Y., Colanzi, A., Ayala, I., Van Lint, J., Malhotra, V. Cell (2001) [Pubmed]
  11. Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Schaack, J., Ho, W.Y., Freimuth, P., Shenk, T. Genes Dev. (1990) [Pubmed]
  12. Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. Ruckdeschel, K., Harb, S., Roggenkamp, A., Hornef, M., Zumbihl, R., Köhler, S., Heesemann, J., Rouot, B. J. Exp. Med. (1998) [Pubmed]
  13. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Terebiznik, M.R., Vieira, O.V., Marcus, S.L., Slade, A., Yip, C.M., Trimble, W.S., Meyer, T., Finlay, B.B., Grinstein, S. Nat. Cell Biol. (2002) [Pubmed]
  14. Cytotoxicity of methylglyoxal bis(guanylhydrazone) in combination with alpha-difluoromethylornithine against HeLa cells and mouse L1210 leukemia. Sunkara, P.S., Prakash, N.J., Chang, C.C., Sjoerdsma, A. J. Natl. Cancer Inst. (1983) [Pubmed]
  15. Antibodies to ribosomes in chronic active hepatitis. Gerber, M.A., Shapiro, J.M., Smith, H., Lebwohl, O., Schaffner, F. Gastroenterology (1979) [Pubmed]
  16. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Ostareck, D.H., Ostareck-Lederer, A., Wilm, M., Thiele, B.J., Mann, M., Hentze, M.W. Cell (1997) [Pubmed]
  17. A single-base change at a splice site in a beta 0-thalassemic gene causes abnormal RNA splicing. Treisman, R., Proudfoot, N.J., Shander, M., Maniatis, T. Cell (1982) [Pubmed]
  18. The HeLa cell protein TEF-1 binds specifically and cooperatively to two SV40 enhancer motifs of unrelated sequence. Davidson, I., Xiao, J.H., Rosales, R., Staub, A., Chambon, P. Cell (1988) [Pubmed]
  19. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Galaktionov, K., Beach, D. Cell (1991) [Pubmed]
  20. The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Webster, N., Jin, J.R., Green, S., Hollis, M., Chambon, P. Cell (1988) [Pubmed]
  21. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., Chambon, P. Cell (1989) [Pubmed]
  22. Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products. Peppelenbosch, M.P., Tertoolen, L.G., Hage, W.J., de Laat, S.W. Cell (1993) [Pubmed]
  23. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Denissenko, M.F., Pao, A., Tang, M., Pfeifer, G.P. Science (1996) [Pubmed]
  24. Interkingdom fusion between human (HeLa) cells and tobacco hybrid (GGLL) protoplasts. Jones, C.W., Mastrangelo, I.A., Smith, H.H., Liu, H.Z., Meck, R.A. Science (1976) [Pubmed]
  25. A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Baeuerle, P.A., Baltimore, D. Genes Dev. (1989) [Pubmed]
  26. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Delaney, S.J., Rich, D.P., Thomson, S.A., Hargrave, M.R., Lovelock, P.K., Welsh, M.J., Wainwright, B.J. Nat. Genet. (1993) [Pubmed]
  27. Methyl labeling of HeLa cell hnRNA: a comparison with mRNA. Salditt-Georgieff, M., Jelinek, W., Darnell, J.E., Furuichi, Y., Morgan, M., Shatkin, A. Cell (1976) [Pubmed]
  28. Chromatin assembly during SV40 DNA replication in vitro. Stillman, B. Cell (1986) [Pubmed]
  29. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Leid, M., Kastner, P., Lyons, R., Nakshatri, H., Saunders, M., Zacharewski, T., Chen, J.Y., Staub, A., Garnier, J.M., Mader, S. Cell (1992) [Pubmed]
  30. The inhibition by DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Sehgal, P.B., Darnell, J.E., Tamm, I. Cell (1976) [Pubmed]
  31. The p70 tumor necrosis factor receptor mediates cytotoxicity. Heller, R.A., Song, K., Fan, N., Chang, D.J. Cell (1992) [Pubmed]
  32. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Gyuris, J., Golemis, E., Chertkov, H., Brent, R. Cell (1993) [Pubmed]
  33. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Ng, H.H., Zhang, Y., Hendrich, B., Johnson, C.A., Turner, B.M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., Bird, A. Nat. Genet. (1999) [Pubmed]
  34. A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Cross, S.H., Meehan, R.R., Nan, X., Bird, A. Nat. Genet. (1997) [Pubmed]
  35. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Lee, W., Mitchell, P., Tjian, R. Cell (1987) [Pubmed]
  36. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Chan, W.C., Nie, S. Science (1998) [Pubmed]
  37. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Deiss, L.P., Kimchi, A. Science (1991) [Pubmed]
  38. A single cDNA, hTFIIA/alpha, encodes both the p35 and p19 subunits of human TFIIA. DeJong, J., Roeder, R.G. Genes Dev. (1993) [Pubmed]
  39. SS-56, a novel cellular target of autoantibody responses in Sjögren syndrome and systemic lupus erythematosus. Billaut-Mulot, O., Cocude, C., Kolesnitchenko, V., Truong, M.J., Chan, E.K., Hachula, E., de la Tribonnière, X., Capron, A., Bahr, G.M. J. Clin. Invest. (2001) [Pubmed]
 
WikiGenes - Universities