The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Design of allele-specific protein methyltransferase inhibitors.

Protein arginine methyltransferases, which catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to arginine side chains in target proteins, regulate transcription, RNA processing, and receptor-mediated signaling. To specifically address the functional role of the individual members of this family, we took a "bump-and-hole" approach and designed a series of N(6)-substituted S-adenosylhomocysteine (SAH) analogues that are targeted toward a yeast protein methyltransferase RMT1. A point mutation was identified (E117G) in Rmt1 that renders the enzyme susceptible to selective inhibition by the SAH analogues. A mass spectrometry based enzymatic assay revealed that two compounds, N(6)-benzyl- and N(6)-naphthylmethyl-SAH, can inhibit the mutant enzyme over the wild-type with the selectivity greater than 20. When the E117G mutation was introduced into the Saccharomyces cerevisiae chromosome, the methylation of Npl3p, a known in vivo Rmt1 substrate, could be moderately reduced by N(6)-naphthylmethyl-SAH in the resulting allele. In addition, an N(6)-benzyl-SAM analogue was found to serve as an orthogonal SAM cofactor. This analogue is preferentially utilized by the mutant methyltransferase relative to the wild-type enzyme with a selectivity greater than 67. This specific enzyme/inhibitor and enzyme/substrate design should be applicable to other members of this protein family and facilitate the characterization of protein methyltransferase function in vivo when combined with RNA expression analysis.[1]

References

  1. Design of allele-specific protein methyltransferase inhibitors. Lin, Q., Jiang, F., Schultz, P.G., Gray, N.S. J. Am. Chem. Soc. (2001) [Pubmed]
 
WikiGenes - Universities