Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay.
In this study, a quartz crystal microbalance (QCM) system operated repetitively in flow injection analysis (FIA) mode, is reported. Four immobilization approaches of seven different methods include: (i) physical adsorption; (ii) two thioamine thiolation methods, using cysteamine and cystamine for gold chemisorption and further coupling; (iii) two oxidized dextran spacer methods, coupling of cysteamine and cystamine thiolated QCM surface with periodate-oxidized dextran for further Schiff acid-base reaction; and (iv) two thiol-gold chemisorption-based self-assembled monolayer (SAM), applying short-chain, C(3), and long-chain, C(11), mercapto fatty acids to insolubilize human serum albumin (HSA) on QCM surface. Effects of these protein immobilization methods on FIA immunoassay of anti-HSA were compared. At the 0.01 mg/ml anti-HSA level, the lowest analyte concentration tested, the SAM using 11-mercaptoundecanoic acid as QCM surface activating agent generated a larger frequency shift than the other immobilization methods. This implied that the use of thiolated long-chain fatty acid constructed as self-assembled monolayer may thereby potentially be a useful protein immobilization method in QCM-FIA application.[1]References
- Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Liu, Y.C., Wang, C.M., Hsiung, K.P. Anal. Biochem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg