The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of cytochrome P450 in estradiol metabolism in vitro.

AIM: Catechol estrogens and 16alpha-hydroxy estrogen are important metabolites that cause carcinogenesis. This study was aimed to stud y the role of cytochrome P450 in estradiol metabolism. METHODS: The estradiol metabolites were determined with HPLC-ECD. Correlation of estradiol metabolites production between cytochrome P450 activity, the inhibitory effect of specific inhibitors and enzyme catalyzing kinetics were studied in cDNA-expressed P450 or human liver microsomes. RESULT: CYP1A2, CYP3A4, and CYP2C9 catalyze the estradiol 2-hydroxylation. CYP2C9, CYP2C19, and CYP2C8 have high activity in catalyzing 17beta-hydroxy dehydrogenation in cDNA expressed P450, but CYP1A2 is the most important enzyme in catalyzing estradiol 2-hydroxylation. Using furafyllin and troleandomycin to inhibit CYP1A2 and CYP3A4 in liver microsomes, it was found that the 2-hydroxylation had been inhibited about the same amount. This result suggests that in human liver microsomes CYP1A2 and CYP3A4 play an important role in 2-hydroxy estradiol formation. At low substrate concentration, 17beta -hydroxy dehydrogenation dominated the estradiol metabolism, but at high substrate concentration, 2-hydroxylation exceeded 17beta-hydroxy dehydrogenation to become the important mechanism. CONCLUSION: CYP1A2 and CYP3A4 are two important enzymes catalyzing the main estradiol 2-hydroxylation metabolism pathway at high substrate concentrations. 17beta-hydroxy dehydrogenation is the main metabolism pathway at low concentrations, and CYP2C9, CYP2C19, and CYP2C8 may have high catalyzing activity.[1]

References

  1. Role of cytochrome P450 in estradiol metabolism in vitro. Cheng, Z.N., Shu, Y., Liu, Z.Q., Wang, L.S., Ou-Yang, D.S., Zhou, H.H. Acta Pharmacol. Sin. (2001) [Pubmed]
 
WikiGenes - Universities