The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphorylation of pyrimidine deoxynucleoside analog diphosphates: selective phosphorylation of L-nucleoside analog diphosphates by 3-phosphoglycerate kinase.

D-Nucleoside analogs, which are in the natural configuration, as well as the L-nucleoside analogs, are clinically relevant antiviral and anticancer agents. Metabolism of L-nucleoside analog diphosphates to the triphosphates, however, remains unexplored. Studies with recombinant nm23-H1 and -H2 isoforms indicated that L-nucleoside analog diphosphates were not phosphorylated by their nucleoside diphosphate kinase (NDPK) activity. Therefore, roles of creatine kinase, 3-phosphoglycerate kinase, and pyruvate kinase were evaluated using preparations from commercial sources and human HepG2 cells. Phosphorylation of L-OddC, L-SddC, L-Fd4C, L-FMAU, and L-ddC were compared with D-deoxynucleoside analogs, AraC, dFdC, and D-FMAU, and D-dideoxynucleoside analogs, ddC and d4T. Results based on preparations from HepG2 cells showed that L-nucleoside analog diphosphates were selectively phosphorylated by 3-phosphoglycerate kinase, whereas, D-deoxynucleoside analog diphosphates were phosphorylated by NDPK. Interestingly, ddCDP and d4TDP were substrates for creatine kinase, but were not phosphorylated by NDPK. In conclusion, it is proposed that specificity of the phosphorylating enzymes toward the nucleoside analog diphosphates is dependent on the configuration of the analog (L or D) and the presence or absence of 3'-hydroxyl group in the sugar moiety. The enzymatic process of phosphorylation of L- and D-nucleoside analog diphosphates is different in cells.[1]

References

 
WikiGenes - Universities