The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

On the mechanism of sugar and amino acid interaction in intestinal transport.

The influence of amino acids on D-glucose transport was studied in isolated vesicles of brush border membrane from rat small intestine. It is demonstrated that: (a) Uptake of D-glucose by the membranes is inhibited by simultaneous flow of L- and D-alanine into the vesicles. (b) Addition of L-alanine to membranes pre-equilibrated with D-glucose causes efflux of this sugar. (c) The influence of amino acids on D-glucose is dependent on the presence of Na+. (d) The ionophorous agents monactin and valinomycin are able to prevent the transport interaction of D-glucose and amino acids. Monactin is effective in the presence of Na+ without further addition of other cations, while valinomycin is effective only with added K+, in accordance with the known specificity of these antibiotics. (e) The inhibitory effect increases with L-alanine concentration up to about 50 mM after which it levels off. The experiments provide evident that the Na+-dependent sugar and amino acid fluxes across the brush border membrane are coupled electrically.[1]

References

  1. On the mechanism of sugar and amino acid interaction in intestinal transport. Murer, H., Sigrist-Nelson, K., Hopfer, U. J. Biol. Chem. (1975) [Pubmed]
 
WikiGenes - Universities