The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

alanine     2-aminopropanoic acid

Synonyms: alanin, DL-ALANINE, H-DL-Ala-OH, D,L-Alanine, L(+)-Alanine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of alanine

 

Psychiatry related information on alanine

 

High impact information on alanine

 

Chemical compound and disease context of alanine

 

Biological context of alanine

  • The two D-alanine carboxypeptidases showed significant homology around the active site [17].
  • Several other structural modifications were shown to affect potency: substitution of D-alanine for glycine-2 reduced the potencies of dynorphin-(1--13) amide, -(1--11), and -(1--10); and methyl esterification of the COOH terminus enhanced the potencies of dynorphin-(1--12), -(1--10), -(1--9), -(1--8), and -(1--7) [18].
  • Wild-type strains bearing additional copies of the dlt operon produced teichoic acids with higher amounts of D-alanine esters, bound cationic proteins less effectively and were less sensitive to antimicrobial peptides [19].
  • Isolated membrane vesicles from Escherichia coli B grown on DL-alanine-glycerol carry out amino acid active transport coupled to D-alanine oxidation by a membrane-bound dehydrogenase [20].
  • Using D-amino acid oxidase coupled with catalase for the deamination of D-alanine to pyruvic acid (a conversion unique to D-alanine), we were able to identify [14C]pyruvic acid in a [14C]alanine-labeled preparation of purified LPXTGase, which represents 27% of the amino acid composition [21].
 

Anatomical context of alanine

 

Associations of alanine with other chemical compounds

  • Both PBPs also catalyzed a model transpeptidase activity using glycine as a transpeptidation acceptor, and showed similar pH profiles and MgCl2 sensitivities for their D-alanine carboxypeptidase I activities [27].
  • D-Amino acid transaminase, which catalyzes the synthesis of D-alanine and D-glutamate for the bacterial cell wall, is a candidate for the design of specific inhibitors that could be novel antimicrobial agents [28].
  • It is demonstrated that: (a) Uptake of D-glucose by the membranes is inhibited by simultaneous flow of L- and D-alanine into the vesicles [29].
  • Alkylation of cysteine 115 with sulfhydryl reagents has previously been shown to inhibit severely the D-alanine carboxypeptidase activity of PBP 5 [30].
  • Surprisingly, the arginine-substituted protein was unable to catalyze D-alanine carboxypeptidase activity in vitro, which suggests that there is a substantial difference in the geometries of the peptide substrate and penicillin G within the active site of PBP 5 [31].
  • Alanine showed the anticipated PPII propensity, but its conformational equilibrium was shifted towards helical conformations in Ac-Aib-Ala-Ala-OMe, indicating that Aib can induce helical conformations of neighboring residues positioned towards the C-terminal direction of the peptide [32].
 

Gene context of alanine

 

Analytical, diagnostic and therapeutic context of alanine

  • Slow processing of L-alanine to D-alanine was observed both by coupled enzymatic assays using D-amino acid oxidase and by high pressure liquid chromatography analysis employing an optically active chromophore (Marfey's reagent) [38].
  • By introducing covalent affinity chromatography employing cephalosporins as ligands, milligram amounts of three high molecular weight PBPs (PBP 1 ab, Mr = 120,000; PBP 2b, Mr = 94,000; and PBP 4, Mr = 78,000) were obtained without any contamination of the major PBP 5, the D-alanine carboxypeptidase [39].
  • The minimum inhibitory concentrations (MICs) for the peptide against Gram-negative species grown on enriched agar medium range from 1.56 to 12.5 micrograms/ml; MICs are increased to greater than 100 micrograms/ml when D-alanine is included in the medium, indicating that alanine racemase is, in fact, inhibited in sensitive species [40].
  • DU-145 cells stably expressing wild-type and A654 EGFR were grown as xenografts in the s.c. space of athymic mice [41].
  • CONCLUSIONS: The significant improvement with the D-alanine further supports the hypothesis of hypofunction of NMDA neurotransmission in schizophrenia and strengthens the proof of the principle that NMDA-enhancing treatment is a promising approach for the pharmacotherapy of schizophrenia [42].

References

  1. Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Markiewicz, Z., Broome-Smith, J.K., Schwarz, U., Spratt, B.G. Nature (1982) [Pubmed]
  2. Functional interactions between oxidative stress, membrane Na(+) permeability, and cell volume in rat hepatoma cells. Schlenker, T., Feranchak, A.P., Schwake, L., Stremmel, W., Roman, R.M., Fitz, J.G. Gastroenterology (2000) [Pubmed]
  3. A conditional marker gene allowing both positive and negative selection in plants. Erikson, O., Hertzberg, M., Näsholm, T. Nat. Biotechnol. (2004) [Pubmed]
  4. Isolation of the penicillin-binding peptide from D-alanine carboxypeptidase of Bacillus subtilis. Georgopapadakou, N., Hammarström, S., Strominger, J.L. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  5. Linear, uncross-linked peptidoglycan secreted by penicillin-treated Bacillus subtilis. Isolation and characterization as a substrate for penicillin-sensitive D-alanine carboxypeptidases. Waxman, D.J., Yu, W., Strominger, J.L. J. Biol. Chem. (1980) [Pubmed]
  6. Stereoselective inhibition by D- and L-alanine of phencyclidine-induced locomotor stimulation in the rat. Tanii, Y., Nishikawa, T., Hashimoto, A., Takahashi, K. Brain Res. (1991) [Pubmed]
  7. D-alanine in the frog skin peptide dermorphin is derived from L-alanine in the precursor. Richter, K., Egger, R., Kreil, G. Science (1987) [Pubmed]
  8. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. Templin, M.F., Ursinus, A., Höltje, J.V. EMBO J. (1999) [Pubmed]
  9. In vivo antagonism of a T cell response by an endogenously expressed ligand. Basu, D., Williams, C.B., Allen, P.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  10. Antibody catalysis of peptide bond formation. Jacobsen, J.R., Schultz, P.G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  11. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Jaurin, B., Grundström, T. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  12. Effects of sulfhydryl reagents on the binding and release of penicillin G by D-alanine carboxypeptidase IA of Escherichia coli. Curtis, S.J., Strominger, J.L. J. Biol. Chem. (1978) [Pubmed]
  13. The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. Yocum, R.R., Rasmussen, J.R., Strominger, J.L. J. Biol. Chem. (1980) [Pubmed]
  14. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Ibba, M., Kast, P., Hennecke, H. Biochemistry (1994) [Pubmed]
  15. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Feng, Z., Barletta, R.G. Antimicrob. Agents Chemother. (2003) [Pubmed]
  16. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Nguyen-Distèche, M., Leyh-Bouille, M., Pirlot, S., Frère, J.M., Ghuysen, J.M. Biochem. J. (1986) [Pubmed]
  17. Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Yocum, R.R., Waxman, D.J., Rasmussen, J.R., Strominger, J.L. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  18. Specific receptor for the opioid peptide dynorphin: structure--activity relationships. Chavkin, C., Goldstein, A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  19. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. Peschel, A., Otto, M., Jack, R.W., Kalbacher, H., Jung, G., Götz, F. J. Biol. Chem. (1999) [Pubmed]
  20. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles. Kaczorowski, G., Shaw, L., F-entes, M., Walsh, C. J. Biol. Chem. (1975) [Pubmed]
  21. Presence of D-alanine in an endopeptidase from Streptococcus pyogenes. Lee, S.G., Fischetti, V.A. J. Biol. Chem. (2003) [Pubmed]
  22. Limited proteolysis of the penicillin-sensitive D-alanine carboxypeptidase purified from Bacillus subtilis membranes. Active water-soluble fragments generated by cleavage of a COOH-terminal membrane anchor. Waxman, D.J., Strominger, J.L. J. Biol. Chem. (1981) [Pubmed]
  23. D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. Hyyrylainen, H.L., Vitikainen, M., Thwaite, J., Wu, H., Sarvas, M., Harwood, C.R., Kontinen, V.P., Stephenson, K. J. Biol. Chem. (2000) [Pubmed]
  24. Peroxisomes induced in Candida boidinii by methanol, oleic acid and D-alanine vary in metabolic function but share common integral membrane proteins. Goodman, J.M., Trapp, S.B., Hwang, H., Veenhuis, M. J. Cell. Sci. (1990) [Pubmed]
  25. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. Collins, L.V., Kristian, S.A., Weidenmaier, C., Faigle, M., Van Kessel, K.P., Van Strijp, J.A., Götz, F., Neumeister, B., Peschel, A. J. Infect. Dis. (2002) [Pubmed]
  26. The stereochemistry of the amino acid side chain influences the inflammatory potential of muramyl dipeptide in experimental meningitis. Cottagnoud, P., Gerber, C.M., Majcherczyk, P.A., Acosta, F., Cottagnoud, M., Neftel, K., Moreillon, P., Täuber, M.G. Infect. Immun. (2003) [Pubmed]
  27. Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. Amanuma, H., Strominger, J.L. J. Biol. Chem. (1980) [Pubmed]
  28. Role reversal for substrates and inhibitors. Slow inactivation of D-amino acid transaminase by its normal substrates and protection by inhibitors. Bhatia, M.B., Martinez del Pozo, A., Ringe, D., Yoshimura, T., Soda, K., Manning, J.M. J. Biol. Chem. (1993) [Pubmed]
  29. On the mechanism of sugar and amino acid interaction in intestinal transport. Murer, H., Sigrist-Nelson, K., Hopfer, U. J. Biol. Chem. (1975) [Pubmed]
  30. Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties. Nicholas, R.A., Strominger, J.L. J. Biol. Chem. (1988) [Pubmed]
  31. Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes D-alanine carboxypeptidase activity without affecting penicillin binding. Malhotra, K.T., Nicholas, R.A. J. Biol. Chem. (1992) [Pubmed]
  32. Conformational manifold of alpha-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. Schweitzer-Stenner, R., Gonzales, W., Bourne, G.T., Feng, J.A., Marshall, G.R. J. Am. Chem. Soc. (2007) [Pubmed]
  33. Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. Lam, H.M., Winkler, M.E. J. Bacteriol. (1990) [Pubmed]
  34. Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Wild, J., Hennig, J., Lobocka, M., Walczak, W., Kłopotowski, T. Mol. Gen. Genet. (1985) [Pubmed]
  35. Amino acid levels in D-alanine-administered mutant mice lacking D-amino acid oxidase. Nagata, Y., Konno, R., Niwa, A. Metab. Clin. Exp. (1994) [Pubmed]
  36. Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Glushakov, A.V., Dennis, D.M., Morey, T.E., Sumners, C., Cucchiara, R.F., Seubert, C.N., Martynyuk, A.E. Mol. Psychiatry (2002) [Pubmed]
  37. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Sarower, M.G., Okada, S., Abe, H. Arch. Biochem. Biophys. (2003) [Pubmed]
  38. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase. Martínez del Pozo, A., Merola, M., Ueno, H., Manning, J.M., Tanizawa, K., Nishimura, K., Soda, K., Ringe, D. J. Biol. Chem. (1989) [Pubmed]
  39. Studies of the high molecular weight penicillin-binding proteins of Bacillus subtilis. Kleppe, G., Strominger, J.L. J. Biol. Chem. (1979) [Pubmed]
  40. Mechanisms of action of chloroalanyl antibacterial peptides. Identification of the intracellular enzymes inactivated on treatment of Escherichia coli JSR-O with the dipeptide beta Cl-LAla-beta Cl-LAla. Boisvert, W., Cheung, K.S., Lerner, S.A., Johnston, M. J. Biol. Chem. (1986) [Pubmed]
  41. Luteinizing hormone-releasing hormone agonist limits DU-145 prostate cancer growth by attenuating epidermal growth factor receptor signaling. Wells, A., Souto, J.C., Solava, J., Kassis, J., Bailey, K.J., Turner, T. Clin. Cancer Res. (2002) [Pubmed]
  42. D-alanine added to antipsychotics for the treatment of schizophrenia. Tsai, G.E., Yang, P., Chang, Y.C., Chong, M.Y. Biol. Psychiatry (2006) [Pubmed]
 
WikiGenes - Universities