Structure and function of GC79/TRPS1, a novel androgen-repressible apoptosis gene.
Expression of death-signaling genes induces many biochemical cascades resulting in elimination of cells via apoptosis or programmed cell death. GC79/TRPS1 is a novel apoptosis associated gene that encodes a multitype zinc finger GATA-type transcription factor. Expression of GC79/TRPS1 is repressed in the rat ventral prostate and significantly elevated after androgen withdrawal by castration. Castration leads to regression of the prostate caused by apoptosis of androgen-dependent prostate cells. Prostate cancer consists of androgen-dependent and androgen-independent cells. The androgen-independent cells, usually present in the prostate of advanced prostate cancer patients do not have the ability to undergo apoptosis after androgen withdrawal. GC79/TRPS1 expression in androgen-dependent prostate cancer cells is repressed by androgens, while GC79/TRPS1 expression is hardly detectable in androgen-independent prostate cancer cells under cell culture conditions. This suggests that lack of GC79/TRPS1 expression could be a mechanism for the inability to induce the apoptotic pathway in androgen-independent prostate cancer cells after androgen withdrawal. This review will focus on the current knowlegde of the structure and function of GC79/TRPS1, a novel androgen-repressible apoptosis gene.[1]References
- Structure and function of GC79/TRPS1, a novel androgen-repressible apoptosis gene. Chang, G.T., van den Bemd, G.J., Jhamai, M., Brinkmann, A.O. Apoptosis (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg