The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics.

One of the underlying mechanisms of multidrug resistance ( MDR) is cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anti-cancer drugs. P-gp is encoded by a group of related genes termed MDR; only MDR1 is known to confer the drug resistance, and its overexpression in cancer cells has been a therapeutic target to circumvent the resistance. To overcome P-gp-mediated drug resistance, we have developed six anti-MDR1 hammerhead ribozymes and delivered them to P-gp- overproducing human leukemia cell line by a retroviral vector containing RNA polymerase III promoter. These ribozyme-transduced cells became vincristine-sensitive, concomitant with the decreases in MDR1 expression, P-gp amount and efflux pump function. Among the ribozymes tested, the anti-MDR1 ribozyme against the translation-initiation site exhibited the highest efficacy. The retrovirus-mediated transfer of this most potent anti-MDR1 ribozyme into a human lymphoma cell line, which was made resistant by infection of pHaMDR1/A retroviral vector and thus possessed a low degree of MDR due to P-gp expression relevant to clinical MDR, resulted in a complete reversal of MDR phenotype. In addition to retrovirus-mediated transfer of ribozymes, we evaluated the efficacy of cationic liposome-mediated transfer of ribozyme. Treatment of a P-gp-producing human breast cancer cell line with the liposome-ribozyme complex resulted in reversal of resistance, concomitant with the decreases in both MDR1 expression and P-gp amount. Confocal microscopic imaging of the cells after treatment with liposome/FITC-dextran showed cytoplasmic fluorescence that was abolished by cytochalasin B, indicating a high endocytotic activity in these cells. The endocytotic activity was well correlated with the success of cationic liposome-mediated transfer of MDR1 ribozyme. These distinct approaches using either retrovirus- or liposome-mediated transfer of anti-MDR1 ribozyme may be selectively applicable to the treatment of MDR cells with different properties such as endocytotic activity as a specific means to reverse resistance.[1]


WikiGenes - Universities