The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Multiple substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite.

Paraoxonase (PON-1) is a high-density lipoprotein (HDL)-bound enzyme with activity toward multiple substrates. It hydrolyzes organic phosphate and aromatic carboxylic acid esters. It also inhibits accumulation of oxidized phospholipids in plasma lipoproteins by a mechanism yet to be determined. Therefore, we subjected apolipoprotein A-I proteoliposomes containing either 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine to oxidation by a peroxynitrite generator, SIN-1, in the presence and absence of purified PON-1. PON-1 modified the proportion of oxidation products without affecting the overall extent of PC oxidation. However, in the presence of PON-1, phosphatidylcholine isoprostanes were hydrolyzed to lysophosphatidylcholine. In addition, PON-1 hydrolyzed the phosphatidylcholine core aldehydes 1-palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-(5-oxo)valeroyl-sn-glycero-3-phosphocholine to lysophosphatidylcholine. This hydrolysis was not affected by pefabloc, a serine esterase inhibitor. There was no detectable release of linoleate, arachidonate, or their hydroperoxy or hydroxy derivatives in the presence of PON-1. We conclude that PON-1 minimizes the accumulation of phosphatidylcholine oxidation products by the hydrolysis of phosphatidylcholine isoprostanes and core aldehydes to lysophosphatidylcholine with a serine esterase-independent mechanism.[1]


  1. Multiple substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite. Ahmed, Z., Ravandi, A., Maguire, G.F., Emili, A., Draganov, D., La Du, B.N., Kuksis, A., Connelly, P.W. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
WikiGenes - Universities