The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

LINOLELAIDIC ACID     octadeca-9,12-dienoic acid

Synonyms: Leinoleic acid, AG-C-86061, AG-H-99435, AG-J-98407, KBioGR_000094, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of linoleic acid

 

Psychiatry related information on linoleic acid

 

High impact information on linoleic acid

  • In monocytes and macrophages, 13-HODE and 15-HETE can be generated from linoleic and arachidonic acids, respectively, by a 12/15-lipoxygenase that is upregulated by the TH2-derived cytokine interleukin-4 [11].
  • Diets high in fat from vegetable and nonaquatic animal sources (rich in linoleic acid, an omega-6 fatty acid, and saturated fats) lead to insulin resistance [12].
  • Polyunsaturated fatty acids derived from precursors of linolenic and linoleic acids appear to be important functional components of photoreceptor cell membranes, although in equal dietary concentrations, linolenic acid precursors affect electroretinogram amplitudes to a greater extent than linoleic acid precursors [13].
  • We review evidence from an observational study that high levels of trans-18:2 (9 cis-, 12 trans- and 9 trans-, 12 cis-isomers of linoleic acid) in red blood cell membranes are associated with markedly higher risk of SCD [14].
  • The suppression of CCR2 expression by OxLDL was mediated by lipid components of OxLDL, such as the oxidized linoleic acid metabolites 9-HODE and 13-HODE, known activators of PPARgamma [15].
 

Chemical compound and disease context of linoleic acid

 

Biological context of linoleic acid

 

Anatomical context of linoleic acid

  • When lymphocytes were pretreated with linoleic acid, washed, and then tested for cytotoxicity in the absence of linoleic acid, suppression of lymphocytotoxicity was still demonstrated [4].
  • Utilization of arachidonic and linoleic acids by cultured human endothelial cells [26].
  • The purpose of this study was to test the effect of linoleic acid on naturally occurring lymphocytotoxicity in a 51Cr release microcytotoxicity assay with the use of a human breast carcinoma cell line (AlAb) as source of the target cells [4].
  • Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells [22].
  • When B- and T-cell populations were separated, each population showed typical decreases in lymphocytotoxicity in the presence of linoleic acid; however, the B-cell fraction (containing "null" cells) was two to three times more efficient at cell killing than was the T-cell fraction [4].
 

Associations of linoleic acid with other chemical compounds

  • These findings suggest that the endothelium obtains arachidonic acid from an extracellular source, that this cannot be provided in the form of linoleic acid and, in fact, that high concentrations of linoleic acid actually may interfere with the ability of the endothelium to maintain an adequate supply of intracellular arachidonic acid [26].
  • Human adrenocortical cells cultured in the presence of 5 microM hexacosanoic (C26:0) or lignoceric (C24:0) acids showed decreased basal and ACTH-stimulated cortisol release compared with cells cultured without exogenous fatty acids or in the presence of linoleic acid (C18:2) [27].
  • Erythrocytes from Asian subjects contained higher proportions of linoleic, dihomogammalinolenic, and arachidonic acids, and lower proportions of oleic and n-3 series fatty acids; triglycerides contained higher linoleic and lower oleic acid levels [28].
  • In a multiple logistic analysis adipose tissue linoleic acid, age, high density lipoprotein cholesterol, and weight/height index each made an independent contribution to the explanation of new CHD [29].
  • There were progressive inverse relations between adipose linoleic acid and platelet-membrane eicosapentaenoic acid and the estimated relative risk of AP [30].
 

Gene context of linoleic acid

  • However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription [31].
  • SCD2-deficient (Scd2-/-) neonatal mice have a skin permeability barrier defect and a specific repartitioning of linoleic acid from epidermal acylceramide species into phospholipids [32].
  • Overall, these results indicate that COXs are responsible for the oxidative metabolism of linoleic acid in HUVEC, and IL-1 beta increases it by inducing the expression of new enzyme, mainly COX2 [33].
  • Palmitate, but not linoleate, induced a significant increase in IL-6 mRNA expression in CAECs (P < 0.001) and, to a less relevant extent, in CASMCs (P < 0.01). gp130 remained unaffected [34].
  • Using Escherichia coli-expressed UCP2 reconstituted into liposomes we found that LAOOH induced purine nucleotide-sensitive H(+) uniport in UCP2-proteoliposomes with higher affinity than LA (K(m) values 97 microM for LAOOH and 275 microM for LA) [35].
 

Analytical, diagnostic and therapeutic context of linoleic acid

References

  1. Diet, lipoproteins, and the progression of coronary atherosclerosis. The Leiden Intervention Trial. Arntzenius, A.C., Kromhout, D., Barth, J.D., Reiber, J.H., Bruschke, A.V., Buis, B., van Gent, C.M., Kempen-Voogd, N., Strikwerda, S., van der Velde, E.A. N. Engl. J. Med. (1985) [Pubmed]
  2. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Moghaddam, M.F., Grant, D.F., Cheek, J.M., Greene, J.F., Williamson, K.C., Hammock, B.D. Nat. Med. (1997) [Pubmed]
  3. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. Rose, D.P., Connolly, J.M., Rayburn, J., Coleman, M. J. Natl. Cancer Inst. (1995) [Pubmed]
  4. Linoleic acid inhibition of naturally occurring lymphocytotoxicity to breast cancer-derived cells measured by a chromium-51 release assay. Samlaska, C.P. J. Natl. Cancer Inst. (1979) [Pubmed]
  5. Prospective study of plasma fatty acids and risk of prostate cancer. Gann, P.H., Hennekens, C.H., Sacks, F.M., Grodstein, F., Giovannucci, E.L., Stampfer, M.J. J. Natl. Cancer Inst. (1994) [Pubmed]
  6. Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: determination of the optimal omega 3-to-omega 6 ratio. Yehuda, S., Carasso, R.L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Abnormal polyunsaturated fatty acid patterns of serum lipids in alcoholism and cirrhosis: arachidonic acid deficiency in cirrhosis. Johnson, S.B., Gordon, E., McClain, C., Low, G., Holman, R.T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  8. The effect of dietary fat on the rapid development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene in SENCAR mice. Fischer, S.M., Conti, C.J., Locniskar, M., Belury, M.A., Maldve, R.E., Lee, M.L., Leyton, J., Slaga, T.J., Bechtel, D.H. Cancer Res. (1992) [Pubmed]
  9. Dissociation of effects of dietary fatty acids on blood pressure and prostanoid metabolism in Goldblatt hypertensive rats. Codde, J.P., Beilin, L.J., Croft, K.D. J. Hypertens. (1984) [Pubmed]
  10. Long-term effects of a linoleic acid-enriched diet, changes in body weight and alcohol consumption on serum total and HDL-cholesterol. Kromhout, D., Arntzenius, A.C., Kempen-Voogd, N., Kempen, H.J., Barth, J.D., van der Voort, H.A., van der Velde, E.A. Atherosclerosis (1987) [Pubmed]
  11. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Huang, J.T., Welch, J.S., Ricote, M., Binder, C.J., Willson, T.M., Kelly, C., Witztum, J.L., Funk, C.D., Conrad, D., Glass, C.K. Nature (1999) [Pubmed]
  12. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G., Pascoe, W.S. Science (1987) [Pubmed]
  13. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Wheeler, T.G., Benolken, R.M., Anderson, R.E. Science (1975) [Pubmed]
  14. Trans-fatty acids and sudden cardiac death. Lemaitre, R.N., King, I.B., Mozaffarian, D., Sootodehnia, N., Siscovick, D.S. Atherosclerosis. Supplements. (2006) [Pubmed]
  15. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. Han, K.H., Chang, M.K., Boullier, A., Green, S.R., Li, A., Glass, C.K., Quehenberger, O. J. Clin. Invest. (2000) [Pubmed]
  16. Effect of dietary fat on growth kinetics of transplantable mammary adenocarcinoma in BALB/c mice. Gabor, H., Hillyard, L.A., Abraham, S. J. Natl. Cancer Inst. (1985) [Pubmed]
  17. trans isomers of oleic and linoleic acids in adipose tissue and sudden cardiac death. Roberts, T.L., Wood, D.A., Riemersma, R.A., Gallagher, P.J., Lampe, F.C. Lancet (1995) [Pubmed]
  18. Growth of T-lymphoma cells in serum-free medium: lack of involvement of the cyclic AMP pathway in long-term cultures. Darfler, F.J., Murakami, H., Insel, P.A. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  19. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Sauer, L.A., Dauchy, R.T., Blask, D.E. Cancer Res. (2000) [Pubmed]
  20. Selective cytotoxicity of phospholipids and diacylglycerols to rat 3Y1 fibroblasts transformed by adenovirus type 12 or its E1A gene. Shimura, H., Ohtsu, M., Matsuzaki, A., Mitsudomi, T., Onodera, K., Kimura, G. Cancer Res. (1988) [Pubmed]
  21. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. Shureiqi, I., Chen, D., Lee, J.J., Yang, P., Newman, R.A., Brenner, D.E., Lotan, R., Fischer, S.M., Lippman, S.M. J. Natl. Cancer Inst. (2000) [Pubmed]
  22. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells. Rao, G.N., Alexander, R.W., Runge, M.S. J. Clin. Invest. (1995) [Pubmed]
  23. Intestinal effects of the products of lipid digestion on gastric electrical activity in the cat. Possible involvement of vagal intestinal receptors sensitive to lipids. Melone, J., Mei, N. Gastroenterology (1991) [Pubmed]
  24. The effects of intestinal infusion of long-chain fatty acids on food intake in humans. French, S.J., Conlon, C.A., Mutuma, S.T., Arnold, M., Read, N.W., Meijer, G., Francis, J. Gastroenterology (2000) [Pubmed]
  25. Modulation of rat gastric mucosal prostaglandin E2 release by dietary linoleic acid: effects on gastric acid secretion and stress-induced mucosal damage. Schepp, W., Steffen, B., Ruoff, H.J., Schusdziarra, V., Classen, M. Gastroenterology (1988) [Pubmed]
  26. Utilization of arachidonic and linoleic acids by cultured human endothelial cells. Spector, A.A., Kaduce, T.L., Hoak, J.C., Fry, G.L. J. Clin. Invest. (1981) [Pubmed]
  27. Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro. Whitcomb, R.W., Linehan, W.M., Knazek, R.A. J. Clin. Invest. (1988) [Pubmed]
  28. Fatty acid composition of erythrocytes and plasma triglyceride and cardiovascular risk in Asian diabetic patients. Peterson, D.B., Fisher, K., Carter, R.D., Mann, J. Lancet (1994) [Pubmed]
  29. Adipose tissue and platelet fatty acids and coronary heart disease in Scottish men. Wood, D.A., Butler, S., Riemersma, R.A., Thomson, M., Oliver, M.F., Fulton, M., Birtwhistle, A., Elton, R. Lancet (1984) [Pubmed]
  30. Linoleic and eicosapentaenoic acids in adipose tissue and platelets and risk of coronary heart disease. Wood, D.A., Riemersma, R.A., Butler, S., Thomson, M., Macintyre, C., Elton, R.A., Oliver, M.F. Lancet (1987) [Pubmed]
  31. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Kliewer, S.A., Forman, B.M., Blumberg, B., Ong, E.S., Borgmeyer, U., Mangelsdorf, D.J., Umesono, K., Evans, R.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  32. Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Miyazaki, M., Dobrzyn, A., Elias, P.M., Ntambi, J.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  33. Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. Camacho, M., Godessart, N., Antón, R., García, M., Vila, L. J. Biol. Chem. (1995) [Pubmed]
  34. Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Staiger, H., Staiger, K., Stefan, N., Wahl, H.G., Machicao, F., Kellerer, M., Häring, H.U. Diabetes (2004) [Pubmed]
  35. Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. Jaburek, M., Miyamoto, S., Di Mascio, P., Garlid, K.D., Jezek, P. J. Biol. Chem. (2004) [Pubmed]
  36. Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. Rose, D.P., Connolly, J.M., Meschter, C.L. J. Natl. Cancer Inst. (1991) [Pubmed]
  37. Letter: Stability of serum oleate and linoleate levels after oral administration of oleic acid. Belin, J., Smith, A.D., Thompson, R.H. Lancet (1975) [Pubmed]
 
WikiGenes - Universities