IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff.
Type I interferon (IFN) stimulates transcription through a heteromeric transcription factor that contains tyrosine- phosphorylated STAT2. We show that STAT2 recruits histone acetyltransferases (HAT) through its transactivation domain, resulting in localized transient acetylation of histones. GCN5, but not p300/CBP or PCAF, is required for STAT2 function. However, GCN5 function is impaired by the transcriptional antagonist, adenovirus E1A oncoprotein. The TFIID component TAF(II)130 potentiates STAT2 function, but TAF(II)28 or the HAT activity of TAF(II)250 do not, and transcriptional induction can proceed independently of the TATA-binding protein, TBP. Moreover, IFN- stimulated transcription was resistant to poliovirus- targeted degradation by TBP, and continued despite host-cell transcriptional shutoff during poliovirus infection. We conclude that a non-classical transcriptional mechanism combats an anticellular action of poliovirus, through a TBP-free TAF-containing complex and GCN5.[1]References
- IFN-Stimulated transcription through a TBP-free acetyltransferase complex escapes viral shutoff. Paulson, M., Press, C., Smith, E., Tanese, N., Levy, D.E. Nat. Cell Biol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg